
aio-pika Documentation
Release 7.0.1

Dmitry Orlov

Feb 20, 2022





Contents

1 Features 3

2 Installation 5

3 Development 7

4 Table Of Contents 9
4.1 Quick start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4.1.1 Simple consumer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.1.2 Simple publisher . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.1.3 Asynchronous message processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.1.4 Working with RabbitMQ transactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.1.5 Get single message example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.1.6 Tornado example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.1.7 External credentials example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.1.8 Connection pooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.2 Patterns and helpers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2.1 Master/Worker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2.2 RPC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2.3 Extending . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.3 RabbitMQ tutorial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3.2 Work Queues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3.3 Publish/Subscribe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.3.4 Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.3.5 Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.3.6 Remote procedure call (RPC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.4 API Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5 Thanks for contributing 75

6 Versioning 77

Python Module Index 79

Index 81

i



ii



aio-pika Documentation, Release 7.0.1

aio-pika is a wrapper for the aiormq for asyncio and humans.

Contents 1

https://coveralls.io/github/mosquito/aio-pika
https://travis-ci.org/mosquito/aio-pika
https://pypi.python.org/pypi/aio-pika/
https://pypi.python.org/pypi/aio-pika/
https://pypi.python.org/pypi/aio-pika/
https://pypi.python.org/pypi/aio-pika/
https://github.com/mosquito/aio-pika
http://github.com/mosquito/aiormq/
https://docs.python.org/3/library/asyncio.html


aio-pika Documentation, Release 7.0.1

2 Contents



CHAPTER 1

Features

• Completely asynchronous API.

• Object oriented API.

• Auto-reconnects with complete state recovery with connect_robust (e.g. declared queues or exchanges, con-
suming state and bindings).

• Python 3.4+ compatible (include 3.6).

3



aio-pika Documentation, Release 7.0.1

4 Chapter 1. Features



CHAPTER 2

Installation

Installation with pip:

pip install aio-pika

Installation from git:

# via pip
pip install https://github.com/mosquito/aio-pika/archive/master.zip

# manually
git clone https://github.com/mosquito/aio-pika.git
cd aio-pika
python setup.py install

5



aio-pika Documentation, Release 7.0.1

6 Chapter 2. Installation



CHAPTER 3

Development

Clone the project:

git clone https://github.com/mosquito/aio-pika.git
cd aio-pika

Create a new virtualenv for aio-pika:

virtualenv -p python3.5 env

Install all requirements for aio-pika:

env/bin/pip install -e '.[develop]'

7

https://github.com/mosquito/aio-pika
https://github.com/mosquito/aio-pika


aio-pika Documentation, Release 7.0.1

8 Chapter 3. Development



CHAPTER 4

Table Of Contents

4.1 Quick start

Some useful examples.

4.1.1 Simple consumer

import asyncio
import aio_pika

async def main(loop):
connection = await aio_pika.connect_robust(

"amqp://guest:guest@127.0.0.1/", loop=loop
)

queue_name = "test_queue"

async with connection:
# Creating channel
channel = await connection.channel()

# Declaring queue
queue = await channel.declare_queue(queue_name, auto_delete=True)

async with queue.iterator() as queue_iter:
async for message in queue_iter:

async with message.process():
print(message.body)

if queue.name in message.body.decode():
break

(continues on next page)

9



aio-pika Documentation, Release 7.0.1

(continued from previous page)

if __name__ == "__main__":
loop = asyncio.get_event_loop()
loop.run_until_complete(main(loop))
loop.close()

4.1.2 Simple publisher

import asyncio
import aio_pika

async def main(loop):
connection = await aio_pika.connect_robust(

"amqp://guest:guest@127.0.0.1/", loop=loop
)

async with connection:
routing_key = "test_queue"

channel = await connection.channel()

await channel.default_exchange.publish(
aio_pika.Message(body="Hello {}".format(routing_key).encode()),
routing_key=routing_key,

)

if __name__ == "__main__":
loop = asyncio.get_event_loop()
loop.run_until_complete(main(loop))
loop.close()

4.1.3 Asynchronous message processing

import asyncio
import aio_pika

async def process_message(message: aio_pika.IncomingMessage):
async with message.process():

print(message.body)
await asyncio.sleep(1)

async def main(loop):
connection = await aio_pika.connect_robust(

"amqp://guest:guest@127.0.0.1/", loop=loop
)

queue_name = "test_queue"

(continues on next page)

10 Chapter 4. Table Of Contents



aio-pika Documentation, Release 7.0.1

(continued from previous page)

# Creating channel
channel = await connection.channel()

# Maximum message count which will be
# processing at the same time.
await channel.set_qos(prefetch_count=100)

# Declaring queue
queue = await channel.declare_queue(queue_name, auto_delete=True)

await queue.consume(process_message)

return connection

if __name__ == "__main__":
loop = asyncio.get_event_loop()
connection = loop.run_until_complete(main(loop))

try:
loop.run_forever()

finally:
loop.run_until_complete(connection.close())

4.1.4 Working with RabbitMQ transactions

import asyncio
import aio_pika

async def main(loop):
connection = await aio_pika.connect_robust(

"amqp://guest:guest@127.0.0.1/", loop=loop
)

async with connection:
routing_key = "test_queue"

# Transactions conflicts with `publisher_confirms`
channel = await connection.channel(publisher_confirms=False)

# Use transactions with async context manager
async with channel.transaction():

# Publishing messages but delivery will not be done
# before committing this transaction
for i in range(10):

message = aio_pika.Message(body="Hello #{}".format(i).encode())

await channel.default_exchange.publish(
message, routing_key=routing_key

)

# Using transactions manually
tx = channel.transaction()

(continues on next page)

4.1. Quick start 11



aio-pika Documentation, Release 7.0.1

(continued from previous page)

# start transaction manually
await tx.select()

await channel.default_exchange.publish(
aio_pika.Message(body="Hello {}".format(routing_key).encode()),
routing_key=routing_key,

)

await tx.commit()
tx.close()

# Using transactions manually
tx = channel.transaction()

# start transaction manually
await tx.select()

await channel.default_exchange.publish(
aio_pika.Message(body="Should be rejected".encode()),
routing_key=routing_key,

)

await tx.rollback()
tx.close()

if __name__ == "__main__":
loop = asyncio.get_event_loop()
loop.run_until_complete(main(loop))
loop.close()

4.1.5 Get single message example

import asyncio
from aio_pika import connect_robust, Message

async def main(loop):
connection = await connect_robust(

"amqp://guest:guest@127.0.0.1/", loop=loop
)

queue_name = "test_queue"
routing_key = "test_queue"

# Creating channel
channel = await connection.channel()

# Declaring exchange
exchange = await channel.declare_exchange("direct", auto_delete=True)

# Declaring queue
queue = await channel.declare_queue(queue_name, auto_delete=True)

(continues on next page)

12 Chapter 4. Table Of Contents



aio-pika Documentation, Release 7.0.1

(continued from previous page)

# Binding queue
await queue.bind(exchange, routing_key)

await exchange.publish(
Message(

bytes("Hello", "utf-8"),
content_type="text/plain",
headers={"foo": "bar"},

),
routing_key,

)

# Receiving message
incoming_message = await queue.get(timeout=5)

# Confirm message
await incoming_message.ack()

await queue.unbind(exchange, routing_key)
await queue.delete()
await connection.close()

if __name__ == "__main__":
loop = asyncio.get_event_loop()
loop.run_until_complete(main(loop))

4.1.6 Tornado example

import asyncio
import tornado.ioloop
import tornado.web

from aio_pika import connect_robust, Message

tornado.ioloop.IOLoop.configure("tornado.platform.asyncio.AsyncIOLoop")
io_loop = tornado.ioloop.IOLoop.current()
asyncio.set_event_loop(io_loop.asyncio_loop)

QUEUE = asyncio.Queue()

class SubscriberHandler(tornado.web.RequestHandler):
async def get(self):

message = await QUEUE.get()
self.finish(message.body)

class PublisherHandler(tornado.web.RequestHandler):
async def post(self):

connection = self.application.settings["amqp_connection"]
channel = await connection.channel()

try:
(continues on next page)

4.1. Quick start 13



aio-pika Documentation, Release 7.0.1

(continued from previous page)

await channel.default_exchange.publish(
Message(body=self.request.body), routing_key="test",

)
finally:

await channel.close()

self.finish("OK")

async def make_app():
amqp_connection = await connect_robust()

channel = await amqp_connection.channel()
queue = await channel.declare_queue("test", auto_delete=True)
await queue.consume(QUEUE.put, no_ack=True)

return tornado.web.Application(
[(r"/publish", PublisherHandler), (r"/subscribe", SubscriberHandler)],
amqp_connection=amqp_connection,

)

if __name__ == "__main__":
app = io_loop.asyncio_loop.run_until_complete(make_app())
app.listen(8888)

tornado.ioloop.IOLoop.current().start()

4.1.7 External credentials example

import asyncio
import aio_pika
import ssl

async def main(loop):
connection = await aio_pika.connect_robust(

host="127.0.0.1",
login="",
ssl=True,
ssl_options=dict(

ca_certs="cacert.pem",
certfile="cert.pem",
keyfile="key.pem",
cert_reqs=ssl.CERT_REQUIRED,

),
loop=loop,

)

async with connection:
routing_key = "test_queue"

channel = await connection.channel()

await channel.default_exchange.publish(
(continues on next page)

14 Chapter 4. Table Of Contents



aio-pika Documentation, Release 7.0.1

(continued from previous page)

aio_pika.Message(body="Hello {}".format(routing_key).encode()),
routing_key=routing_key,

)

if __name__ == "__main__":
loop = asyncio.get_event_loop()
loop.run_until_complete(main(loop))
loop.close()

4.1.8 Connection pooling

import asyncio
import aio_pika
from aio_pika.pool import Pool

async def main():
loop = asyncio.get_event_loop()

async def get_connection():
return await aio_pika.connect_robust("amqp://guest:guest@localhost/")

connection_pool = Pool(get_connection, max_size=2, loop=loop)

async def get_channel() -> aio_pika.Channel:
async with connection_pool.acquire() as connection:

return await connection.channel()

channel_pool = Pool(get_channel, max_size=10, loop=loop)
queue_name = "pool_queue"

async def consume():
async with channel_pool.acquire() as channel: # type: aio_pika.Channel

await channel.set_qos(10)

queue = await channel.declare_queue(
queue_name, durable=False, auto_delete=False

)

async with queue.iterator() as queue_iter:
async for message in queue_iter:

print(message)
await message.ack()

async def publish():
async with channel_pool.acquire() as channel: # type: aio_pika.Channel

await channel.default_exchange.publish(
aio_pika.Message(("Channel: %r" % channel).encode()),
queue_name,

)

async with connection_pool, channel_pool:
task = loop.create_task(consume())
await asyncio.wait([publish() for _ in range(10000)])

(continues on next page)

4.1. Quick start 15



aio-pika Documentation, Release 7.0.1

(continued from previous page)

await task

if __name__ == "__main__":
loop = asyncio.get_event_loop()
loop.run_until_complete(main())
loop.close()

4.2 Patterns and helpers

Note: Available since aio-pika>=1.7.0

aio-pika includes some useful patterns for creating distributed systems.

4.2.1 Master/Worker

Helper which implements Master/Worker pattern. This applicable for balancing tasks between multiple workers.

The master creates tasks:

import asyncio
from aio_pika import connect_robust
from aio_pika.patterns import Master

async def main():
connection = await connect_robust("amqp://guest:guest@127.0.0.1/")

async with connection:
# Creating channel
channel = await connection.channel()

master = Master(channel)

# Creates tasks by proxy object
for task_id in range(1000):

await master.proxy.my_task_name(task_id=task_id)

# Or using create_task method
for task_id in range(1000):

await master.create_task(
"my_task_name", kwargs=dict(task_id=task_id)

)

if __name__ == "__main__":
loop = asyncio.get_event_loop()
loop.run_until_complete(main())

Worker code:

16 Chapter 4. Table Of Contents

https://github.com/mosquito/aio-pika


aio-pika Documentation, Release 7.0.1

import asyncio
from aio_pika import connect_robust
from aio_pika.patterns import Master, RejectMessage, NackMessage

async def worker(*, task_id):
# If you want to reject message or send
# nack you might raise special exception

if task_id % 2 == 0:
raise RejectMessage(requeue=False)

if task_id % 2 == 1:
raise NackMessage(requeue=False)

print(task_id)

async def main():
connection = await connect_robust("amqp://guest:guest@127.0.0.1/")

# Creating channel
channel = await connection.channel()

master = Master(channel)
await master.create_worker("my_task_name", worker, auto_delete=True)

return connection

if __name__ == "__main__":
loop = asyncio.get_event_loop()
connection = loop.run_until_complete(main())
try:

loop.run_forever()
finally:

loop.run_until_complete(connection.close())

The one or multiple workers executes tasks.

4.2.2 RPC

Helper which implements Remote Procedure Call pattern. This applicable for balancing tasks between multiple work-
ers.

The caller creates tasks and awaiting results:

import asyncio
from aio_pika import connect_robust
from aio_pika.patterns import RPC

async def main():
connection = await connect_robust(

"amqp://guest:guest@127.0.0.1/",
client_properties={"connection_name": "caller"},

(continues on next page)

4.2. Patterns and helpers 17



aio-pika Documentation, Release 7.0.1

(continued from previous page)

)

async with connection:
# Creating channel
channel = await connection.channel()

rpc = await RPC.create(channel)

# Creates tasks by proxy object
for i in range(1000):

print(await rpc.proxy.multiply(x=100, y=i))

# Or using create_task method
for i in range(1000):

print(await rpc.call("multiply", kwargs=dict(x=100, y=i)))

if __name__ == "__main__":
loop = asyncio.get_event_loop()
loop.run_until_complete(main())

One or multimple callees executing tasks:

import asyncio
from aio_pika import connect_robust
from aio_pika.patterns import RPC

async def multiply(*, x, y):
return x * y

async def main():
connection = await connect_robust(

"amqp://guest:guest@127.0.0.1/",
client_properties={"connection_name": "callee"},

)

# Creating channel
channel = await connection.channel()

rpc = await RPC.create(channel)
await rpc.register("multiply", multiply, auto_delete=True)

return connection

if __name__ == "__main__":
loop = asyncio.get_event_loop()
connection = loop.run_until_complete(main())

try:
loop.run_forever()

finally:
loop.run_until_complete(connection.close())
loop.shutdown_asyncgens()

18 Chapter 4. Table Of Contents



aio-pika Documentation, Release 7.0.1

4.2.3 Extending

Both patterns serialization behaviour might be changed by inheritance and redefinition of methods aio_pika.
patterns.base.serialize() and aio_pika.patterns.base.deserialize().

Following examples demonstrates it:

import gzip
import json

from typing import Any
from aio_pika.patterns import RPC, Master

class JsonMaster(Master):
# deserializer will use SERIALIZER.loads(body)
SERIALIZER = json
CONTENT_TYPE = "application/json"

def serialize(self, data: Any) -> bytes:
return self.SERIALIZER.dumps(data, ensure_ascii=False)

class JsonRPC(RPC):
SERIALIZER = json
CONTENT_TYPE = "application/json"

def serialize(self, data: Any) -> bytes:
return self.SERIALIZER.dumps(data, ensure_ascii=False, default=repr)

def serialize_exception(self, exception: Exception) -> bytes:
return self.serialize(

{
"error": {

"type": exception.__class__.__name__,
"message": repr(exception),
"args": exception.args,

}
}

)

class JsonGZipRPC(JsonRPC):
CONTENT_TYPE = "application/octet-stream"

def serialize(self, data: Any) -> bytes:
return gzip.compress(super().serialize(data))

def deserialize(self, data: Any) -> bytes:
return super().deserialize(gzip.decompress(data))

4.2. Patterns and helpers 19



aio-pika Documentation, Release 7.0.1

4.3 RabbitMQ tutorial

4.3.1 Introduction

Warning: This is a beta version of the port from official tutorial. Please when you found an error create issue or
pull request for me.

It is expected that you are familiar with the basics of asyncio. Anyway following examples work as written. You
feel free to download them and test it as is without any changes (in case your RabbitMQ installation allows access
for user “guest”).

Otherwise we recommend to read asyncio tutorial.

Note: Prerequisites

This tutorial assumes RabbitMQ is installed and running on localhost on standard port (5672). In case you use a
different host, port or credentials, connections settings would require adjusting.

Where to get help

If you’re having trouble going through this tutorial you can contact us through the mailing list.

RabbitMQ is a message broker. The principal idea is pretty simple: it accepts and forwards messages. You can think
about it as a post office: when you send mail to the post box you’re pretty sure that Mr. Postman will eventually deliver
the mail to your recipient. Using this metaphor RabbitMQ is a post box, a post office and a postman.

The major difference between RabbitMQ and the post office is the fact that it doesn’t deal with paper, instead it accepts,
stores and forwards binary blobs of data – messages.

RabbitMQ, and messaging in general, uses some jargon.

• Producing means nothing more than sending. A program that sends messages is a producer.

We’ll draw it like that, with “P”:

• A queue is the name for a mailbox. It lives inside RabbitMQ. Although messages flow through RabbitMQ and
your applications, they can be stored only inside a queue. A queue is not bound by any limits, it can store as
many messages as you like – it’s essentially an infinite buffer. Many producers can send messages that go to one
queue, many consumers can try to receive data from one queue.

A queue will be drawn as like that, with its name above it:

20 Chapter 4. Table Of Contents

https://www.rabbitmq.com/tutorials/tutorial-one-python.html
https://github.com/mosquito/aio-pika/issues
https://github.com/mosquito/aio-pika/compare
https://docs.python.org/3/library/asyncio.html
https://pymotw.com/3/asyncio/coroutines.html
https://www.rabbitmq.com/download.html
https://groups.google.com/forum/#!forum/rabbitmq-users


aio-pika Documentation, Release 7.0.1

• Consuming has a similar meaning to receiving. A consumer is a program that mostly waits to receive messages.

On our drawings it’s shown with “C”:

Note: Note that the producer, consumer, and broker do not have to reside on the same machine; indeed in most
applications they don’t.

Hello World!

Note: Using the aio-pika async Python client

Our “Hello world” won’t be too complex – let’s send a message, receive it and print it on the screen. To do so we need
two programs: one that sends a message and one that receives and prints it.

Our overall design will look like:

Producer sends messages to the “hello” queue. The consumer receives messages from that queue.

Note: RabbitMQ libraries

RabbitMQ speaks AMQP 0.9.1, which is an open, general-purpose protocol for messaging. There are a number of
clients for RabbitMQ in many different languages. In this tutorial series we’re going to use aio-pika, which is the
Python client recommended by the RabbitMQ team. To install it you can use the pip package management tool.

Sending

4.3. RabbitMQ tutorial 21

https://github.com/mosquito/aio-pika
https://www.rabbitmq.com/devtools.html
https://github.com/mosquito/aio-pika
https://pip.pypa.io/en/stable/quickstart/


aio-pika Documentation, Release 7.0.1

Our first program send.py will send a single message to the queue. The first thing we need to do is to establish a
connection with RabbitMQ server.

async def main(loop):
# Perform connection
connection = await connect(

"amqp://guest:guest@localhost/", loop=loop
)

We’re connected now, to a broker on the local machine - hence the localhost. If we wanted to connect to a broker on a
different machine we’d simply specify its name or IP address here.

Next, before sending we need to make sure the recipient queue exists. If we send a message to non-existing location,
RabbitMQ will just trash the message. Let’s create a queue to which the message will be delivered, let’s name it hello:

channel = await connection.channel()

At that point we’re ready to send a message. Our first message will just contain a string Hello World! and we want to
send it to our hello queue.

In RabbitMQ a message can never be sent directly to the queue, it always needs to go through an exchange. But let’s
not get dragged down by the details – you can read more about exchanges in the third part of this tutorial. All we
need to know now is how to use a default exchange identified by an empty string. This exchange is special – it allows
us to specify exactly to which queue the message should go. The queue name needs to be specified in the routing_key
parameter:

# Creating a channel
channel = await connection.channel()

# Sending the message
await channel.default_exchange.publish(

Message(b"Hello World!"),
routing_key="hello",

)

print(" [x] Sent 'Hello World!'")

Before exiting the program we need to make sure the network buffers were flushed and our message was actually
delivered to RabbitMQ. We can do it by gently closing the connection.

await connection.close()

Note: Sending doesn’t work!

If this is your first time using RabbitMQ and you don’t see the “Sent” message then you may be left scratching your
head wondering what could be wrong. Maybe the broker was started without enough free disk space (by default it
needs at least 1Gb free) and is therefore refusing to accept messages. Check the broker logfile to confirm and reduce
the limit if necessary. The configuration file documentation will show you how to set disk_free_limit.

22 Chapter 4. Table Of Contents

http://www.rabbitmq.com/configure.html#config-items


aio-pika Documentation, Release 7.0.1

Receiving

Our second program receive.py will receive messages from the queue and print them on the screen.

Again, first we need to connect to RabbitMQ server. The code responsible for connecting to Rabbit is the same as
previously.

The next step, just like before, is to make sure that the queue exists. Creating a queue using queue_declare is idempo-
tent – we can run the command as many times as we like, and only one will be created.

# Perform connection
connection = await connect(

"amqp://guest:guest@localhost/", loop=loop
)

# Creating a channel
channel = await connection.channel()

# Declaring queue
queue = await channel.declare_queue("hello")

Note: This article contains adopted official examples only. But aio-pika allows to use Python 3.5+ async for notation.

For example:

async with connection:
# Creating channel
channel = await connection.channel()

# Declaring queue
queue = await channel.declare_queue(queue_name, auto_delete=True)

async with queue.iterator() as queue_iter:
async for message in queue_iter:

async with message.process():
print(message.body)

if queue.name in message.body.decode():
break

You may ask why we declare the queue again – we have already declared it in our previous code. We could avoid that
if we were sure that the queue already exists. For example if send.py program was run before. But we’re not yet sure
which program to run first. In such cases it’s a good practice to repeat declaring the queue in both programs.

Note: Listing queues

4.3. RabbitMQ tutorial 23



aio-pika Documentation, Release 7.0.1

You may wish to see what queues RabbitMQ has and how many messages are in them. You can do it (as a privileged
user) using the rabbitmqctl tool:

$ sudo rabbitmqctl list_queues
Listing queues ...
hello 0
...done.
(omit sudo on Windows)

Receiving messages from the queue is simple. It works by subscribing a callback function to a queue or using simple
get.

Whenever we receive a message, this callback function is called by the aio-pika library. In our case this function will
print on the screen the contents of the message.

async def on_message(message: IncomingMessage):
"""
on_message doesn't necessarily have to be defined as async.
Here it is to show that it's possible.
"""
print(" [x] Received message %r" % message)
print("Message body is: %r" % message.body)
print("Before sleep!")
await asyncio.sleep(5) # Represents async I/O operations
print("After sleep!")

Next, we need to tell RabbitMQ that this particular callback function should receive messages from our hello queue:

async def main(loop):
# Perform connection
connection = await connect(

"amqp://guest:guest@localhost/", loop=loop
)

# Creating a channel
channel = await connection.channel()

# Declaring queue
queue = await channel.declare_queue("hello")

# Start listening the queue with name 'hello'
await queue.consume(on_message, no_ack=True)

The no_ack parameter will be described later on.

Putting it all together

Full code for send.py:

import asyncio
from aio_pika import connect, Message

async def main(loop):
# Perform connection
connection = await connect(

(continues on next page)

24 Chapter 4. Table Of Contents

https://github.com/mosquito/aio-pika


aio-pika Documentation, Release 7.0.1

(continued from previous page)

"amqp://guest:guest@localhost/", loop=loop
)

# Creating a channel
channel = await connection.channel()

# Sending the message
await channel.default_exchange.publish(

Message(b"Hello World!"),
routing_key="hello",

)

print(" [x] Sent 'Hello World!'")

await connection.close()

if __name__ == "__main__":
loop = asyncio.get_event_loop()
loop.run_until_complete(main(loop))

Full receive.py code:

import asyncio
from aio_pika import connect, IncomingMessage

async def on_message(message: IncomingMessage):
"""
on_message doesn't necessarily have to be defined as async.
Here it is to show that it's possible.
"""
print(" [x] Received message %r" % message)
print("Message body is: %r" % message.body)
print("Before sleep!")
await asyncio.sleep(5) # Represents async I/O operations
print("After sleep!")

async def main(loop):
# Perform connection
connection = await connect(

"amqp://guest:guest@localhost/", loop=loop
)

# Creating a channel
channel = await connection.channel()

# Declaring queue
queue = await channel.declare_queue("hello")

# Start listening the queue with name 'hello'
await queue.consume(on_message, no_ack=True)

if __name__ == "__main__":
loop = asyncio.get_event_loop()

(continues on next page)

4.3. RabbitMQ tutorial 25



aio-pika Documentation, Release 7.0.1

(continued from previous page)

loop.create_task(main(loop))

# we enter a never-ending loop that waits for data and
# runs callbacks whenever necessary.
print(" [*] Waiting for messages. To exit press CTRL+C")
loop.run_forever()

Now we can try out our programs in a terminal. First, let’s send a message using our send.py program:

$ python send.py
[x] Sent 'Hello World!'

The producer program send.py will stop after every run. Let’s receive it:

$ python receive.py
[x] Received message IncomingMessage:{
"app_id": null,
"body_size": 12,
"cluster_id": null,
"consumer_tag": "ctag1.11fa33f5f4fa41f6a6488648181656e0",
"content_encoding": null,
"content_type": null,
"correlation_id": "b'None'",
"delivery_mode": 1,
"delivery_tag": 1,
"exchange": "",
"expiration": null,
"headers": null,
"message_id": null,
"priority": null,
"redelivered": false,
"reply_to": null,
"routing_key": "hello",
"synchronous": false,
"timestamp": null,
"type": "None",
"user_id": null

}
Message body is: b'Hello World!'

Hurray! We were able to send our first message through RabbitMQ. As you might have noticed, the receive.py program
doesn’t exit. It will stay ready to receive further messages, and may be interrupted with Ctrl-C.

Try to run send.py again in a new terminal.

We’ve learned how to send and receive a message from a named queue. It’s time to move on to part 2 and build a
simple work queue.

Note: This material was adopted from official tutorial on rabbitmq.org.

26 Chapter 4. Table Of Contents

https://www.rabbitmq.com/tutorials/tutorial-one-python.html


aio-pika Documentation, Release 7.0.1

4.3.2 Work Queues

Warning: This is a beta version of the port from official tutorial. Please when you found an error create issue or
pull request for me.

This implementation is a part of official tutorial. Since version 1.7.0 aio-pika has patterns submodule.

You might use aio_pika.patterns.Master for real projects.

Note: Using the aio-pika async Python client

Note: Prerequisites

This tutorial assumes RabbitMQ is installed and running on localhost on standard port (5672). In case you use a
different host, port or credentials, connections settings would require adjusting.

Where to get help

If you’re having trouble going through this tutorial you can contact us through the mailing list.

In the first tutorial we wrote programs to send and receive messages from a named queue. In this one we’ll create a
Work Queue that will be used to distribute time-consuming tasks among multiple workers.

The main idea behind Work Queues (aka: Task Queues) is to avoid doing a resource-intensive task immediately and
having to wait for it to complete. Instead we schedule the task to be done later. We encapsulate a task as a message
and send it to the queue. A worker process running in the background will pop the tasks and eventually execute the
job. When you run many workers the tasks will be shared between them.

This concept is especially useful in web applications where it’s impossible to handle a complex task during a short
HTTP request window.

Preparation

In the previous part of this tutorial we sent a message containing “Hello World!”. Now we’ll be sending strings that
stand for complex tasks. We don’t have a real-world task, like images to be resized or pdf files to be rendered, so let’s
fake it by just pretending we’re busy - by using the time.sleep() function. We’ll take the number of dots in the string as
its complexity; every dot will account for one second of “work”. For example, a fake task described by Hello. . . will
take three seconds.

We will slightly modify the send.py code from our previous example, to allow arbitrary messages to be sent from the
command line. This program will schedule tasks to our work queue, so let’s name it new_task.py:

4.3. RabbitMQ tutorial 27

https://www.rabbitmq.com/tutorials/tutorial-two-python.html
https://github.com/mosquito/aio-pika/issues
https://github.com/mosquito/aio-pika/compare
https://github.com/mosquito/aio-pika
https://github.com/mosquito/aio-pika
https://www.rabbitmq.com/download.html
https://groups.google.com/forum/#!forum/rabbitmq-users


aio-pika Documentation, Release 7.0.1

message_body = b" ".join(
arg.encode() for arg in sys.argv[1:]) or b"Hello World!"

message = Message(
message_body,
delivery_mode=DeliveryMode.PERSISTENT

)

# Sending the message
await channel.default_exchange.publish(

message, routing_key="task_queue"
)

print(" [x] Sent %r" % message)

Our old receive.py script also requires some changes: it needs to fake a second of work for every dot in the message
body. It will pop messages from the queue and perform the task, so let’s call it worker.py:

print(" [x] Received message %r" % message)
print(" Message body is: %r" % message.body)

Round-robin dispatching

One of the advantages of using a Task Queue is the ability to easily parallelise work. If we are building up a backlog
of work, we can just add more workers and that way, scale easily.

First, let’s try to run two worker.py scripts at the same time. They will both get messages from the queue, but how
exactly? Let’s see.

You need three consoles open. Two will run the worker.py script. These consoles will be our two consumers - C1 and
C2.

shell1$ python worker.py
[*] Waiting for messages. To exit press CTRL+C

shell2$ python worker.py
[*] Waiting for messages. To exit press CTRL+C

In the third one we’ll publish new tasks. Once you’ve started the consumers you can publish a few messages:

shell3$ python new_task.py First message.
shell3$ python new_task.py Second message..
shell3$ python new_task.py Third message...
shell3$ python new_task.py Fourth message....
shell3$ python new_task.py Fifth message.....

Let’s see what is delivered to our workers:

shell1$ python worker.py
[*] Waiting for messages. To exit press CTRL+C
[x] Received 'First message.'
[x] Received 'Third message...'
[x] Received 'Fifth message.....'

28 Chapter 4. Table Of Contents



aio-pika Documentation, Release 7.0.1

shell2$ python worker.py
[*] Waiting for messages. To exit press CTRL+C
[x] Received 'Second message..'
[x] Received 'Fourth message....'

By default, RabbitMQ will send each message to the next consumer, in sequence. On average every consumer will
get the same number of messages. This way of distributing messages is called round-robin. Try this out with three or
more workers.

Message acknowledgment

Doing a task can take a few seconds. You may wonder what happens if one of the consumers starts a long task and
dies with it only partly done. With our current code once RabbitMQ delivers message to the customer it immediately
removes it from memory. In this case, if you kill a worker we will lose the message it was just processing. We’ll also
lose all the messages that were dispatched to this particular worker but were not yet handled.

But we don’t want to lose any tasks. If a worker dies, we’d like the task to be delivered to another worker.

In order to make sure a message is never lost, RabbitMQ supports message acknowledgments. An ack(nowledgement)
is sent back from the consumer to tell RabbitMQ that a particular message had been received, processed and that
RabbitMQ is free to delete it.

If a consumer dies (its channel is closed, connection is closed, or TCP connection is lost) without sending an ack,
RabbitMQ will understand that a message wasn’t processed fully and will re-queue it. If there are other consumers
online at the same time, it will then quickly redeliver it to another consumer. That way you can be sure that no message
is lost, even if the workers occasionally die.

There aren’t any message timeouts; RabbitMQ will redeliver the message when the consumer dies. It’s fine even if
processing a message takes a very, very long time.

Message acknowledgments are turned on by default. In previous examples we explicitly turned them off via the
no_ack=True flag. It’s time to remove this flag and send a proper acknowledgment from the worker, once we’re done
with a task.

async def on_message(message: IncomingMessage):
print(" [x] Received %r" % message.body)
await asyncio.sleep(message.body.count(b'.'), loop=loop)
print(" [x] Done")
message.ack()

or using special context processor:

async def on_message(message: IncomingMessage):
async with message.process():

print(" [x] Received message %r" % message)
print(" Message body is: %r" % message.body)

If context processor will catch an exception, the message will be returned to the queue.

Using this code we can be sure that even if you kill a worker using CTRL+C while it was processing a message,
nothing will be lost. Soon after the worker dies all unacknowledged messages will be redelivered.

Note: Forgotten acknowledgment

It’s a common mistake to miss the basic_ack. It’s an easy error, but the consequences are serious. Messages will be
redelivered when your client quits (which may look like random redelivery), but RabbitMQ will eat more and more
memory as it won’t be able to release any unacked messages.

4.3. RabbitMQ tutorial 29



aio-pika Documentation, Release 7.0.1

In order to debug this kind of mistake you can use rabbitmqctl to print the messages_unacknowledged field:

$ sudo rabbitmqctl list_queues name messages_ready messages_unacknowledged
Listing queues ...
hello 0 0
...done.

Message durability

We have learned how to make sure that even if the consumer dies, the task isn’t lost. But our tasks will still be lost if
RabbitMQ server stops.

When RabbitMQ quits or crashes it will forget the queues and messages unless you tell it not to. Two things are
required to make sure that messages aren’t lost: we need to mark both the queue and messages as durable.

First, we need to make sure that RabbitMQ will never lose our queue. In order to do so, we need to declare it as
durable:

queue = await channel.declare_queue(
durable=True

)

Although this command is correct by itself, it won’t work in our setup. That’s because we’ve already defined a queue
called hello which is not durable. RabbitMQ doesn’t allow you to redefine an existing queue with different parameters
and will return an error to any program that tries to do that. But there is a quick workaround - let’s declare a queue
with different name, for example task_queue:

queue = await channel.declare_queue(
"task_queue",
durable=True

)

This queue_declare change needs to be applied to both the producer and consumer code.

At that point we’re sure that the task_queue queue won’t be lost even if RabbitMQ restarts. Now we need to mark our
messages as persistent - by supplying a delivery_mode property with a value PERSISTENT (see enum aio_pika.
DeliveryMode).

async def main(loop):
# Perform connection
connection = await connect("amqp://guest:guest@localhost/", loop=loop)

# Creating a channel
channel = await connection.channel()

message_body = b" ".join(
arg.encode() for arg in sys.argv[1:]) or b"Hello World!"

message = Message(
message_body,
delivery_mode=DeliveryMode.PERSISTENT

)

# Sending the message
await channel.default_exchange.publish(

message, routing_key="task_queue"

(continues on next page)

30 Chapter 4. Table Of Contents



aio-pika Documentation, Release 7.0.1

(continued from previous page)

)

print(" [x] Sent %r" % message)

await connection.close()

Note: Note on message persistence

Marking messages as persistent doesn’t fully guarantee that a message won’t be lost. Although it tells RabbitMQ to
save the message to disk, there is still a short time window when RabbitMQ has accepted a message and hasn’t saved
it yet. Also, RabbitMQ doesn’t do fsync(2) for every message – it may be just saved to cache and not really written to
the disk. The persistence guarantees aren’t strong, but it’s more than enough for our simple task queue. If you need a
stronger guarantee then you can use publisher confirms.

aio-pika supports publisher confirms out of the box.

Fair dispatch

You might have noticed that the dispatching still doesn’t work exactly as we want. For example in a situation with two
workers, when all odd messages are heavy and even messages are light, one worker will be constantly busy and the
other one will do hardly any work. Well, RabbitMQ doesn’t know anything about that and will still dispatch messages
evenly.

This happens because RabbitMQ just dispatches a message when the message enters the queue. It doesn’t look at
the number of unacknowledged messages for a consumer. It just blindly dispatches every n-th message to the n-th
consumer.

In order to defeat that we can use the basic.qos method with the prefetch_count=1 setting. This tells RabbitMQ not to
give more than one message to a worker at a time. Or, in other words, don’t dispatch a new message to a worker until
it has processed and acknowledged the previous one. Instead, it will dispatch it to the next worker that is not still busy.

# Creating a channel
channel = await connection.channel()
await channel.set_qos(prefetch_count=1)

Note: Note about queue size

If all the workers are busy, your queue can fill up. You will want to keep an eye on that, and maybe add more workers,
or have some other strategy.

4.3. RabbitMQ tutorial 31

https://www.rabbitmq.com/confirms.html
https://github.com/mosquito/aio-pika
https://www.rabbitmq.com/confirms.html


aio-pika Documentation, Release 7.0.1

Putting it all together

Final code of our new_task.py script:

import sys
import asyncio
from aio_pika import connect, Message, DeliveryMode

async def main(loop):
# Perform connection
connection = await connect("amqp://guest:guest@localhost/", loop=loop)

# Creating a channel
channel = await connection.channel()

message_body = b" ".join(
arg.encode() for arg in sys.argv[1:]) or b"Hello World!"

message = Message(
message_body,
delivery_mode=DeliveryMode.PERSISTENT

)

# Sending the message
await channel.default_exchange.publish(

message, routing_key="task_queue"
)

print(" [x] Sent %r" % message)

await connection.close()

if __name__ == "__main__":
loop = asyncio.get_event_loop()
loop.run_until_complete(main(loop))

And our worker.py:

import asyncio
from aio_pika import connect, IncomingMessage

loop = asyncio.get_event_loop()

async def on_message(message: IncomingMessage):
async with message.process():

print(" [x] Received message %r" % message)
print(" Message body is: %r" % message.body)

async def main():
# Perform connection
connection = await connect("amqp://guest:guest@localhost/", loop=loop)

# Creating a channel
channel = await connection.channel()

(continues on next page)

32 Chapter 4. Table Of Contents



aio-pika Documentation, Release 7.0.1

(continued from previous page)

await channel.set_qos(prefetch_count=1)

# Declaring queue
queue = await channel.declare_queue(

"task_queue",
durable=True

)

# Start listening the queue with name 'task_queue'
await queue.consume(on_message)

if __name__ == "__main__":
loop = asyncio.get_event_loop()
loop.create_task(main())

# we enter a never-ending loop that waits for data and runs
# callbacks whenever necessary.
print(" [*] Waiting for messages. To exit press CTRL+C")
loop.run_forever()

Using message acknowledgments and prefetch_count you can set up a work queue. The durability options let the tasks
survive even if RabbitMQ is restarted.

Now we can move on to tutorial 3 and learn how to deliver the same message to many consumers.

Note: This material was adopted from official tutorial on rabbitmq.org.

4.3.3 Publish/Subscribe

Warning: This is a beta version of the port from official tutorial. Please when you found an error create issue or
pull request for me.

Note: Using the aio-pika async Python client

Note: Prerequisites

This tutorial assumes RabbitMQ is installed and running on localhost on standard port (5672). In case you use a
different host, port or credentials, connections settings would require adjusting.

Where to get help

If you’re having trouble going through this tutorial you can contact us through the mailing list.

In the previous tutorial we created a work queue. The assumption behind a work queue is that each task is delivered
to exactly one worker. In this part we’ll do something completely different — we’ll deliver a message to multiple
consumers. This pattern is known as “publish/subscribe”.

To illustrate the pattern, we’re going to build a simple logging system. It will consist of two programs — the first will
emit log messages and the second will receive and print them.

4.3. RabbitMQ tutorial 33

https://www.rabbitmq.com/tutorials/tutorial-two-python.html
https://www.rabbitmq.com/tutorials/tutorial-three-python.html
https://github.com/mosquito/aio-pika/issues
https://github.com/mosquito/aio-pika/compare
https://github.com/mosquito/aio-pika
https://www.rabbitmq.com/download.html
https://groups.google.com/forum/#!forum/rabbitmq-users


aio-pika Documentation, Release 7.0.1

In our logging system every running copy of the receiver program will get the messages. That way we’ll be able to
run one receiver and direct the logs to disk; and at the same time we’ll be able to run another receiver and see the logs
on the screen.

Essentially, published log messages are going to be broadcast to all the receivers.

Exchanges

In previous parts of the tutorial we sent and received messages to and from a queue. Now it’s time to introduce the full
messaging model in Rabbit.

Let’s quickly go over what we covered in the previous tutorials:

• A producer is a user application that sends messages.

• A queue is a buffer that stores messages.

• A consumer is a user application that receives messages.

The core idea in the messaging model in RabbitMQ is that the producer never sends any messages directly to a queue.
Actually, quite often the producer doesn’t even know if a message will be delivered to any queue at all.

Instead, the producer can only send messages to an exchange. An exchange is a very simple thing. On one side it
receives messages from producers and the other side it pushes them to queues. The exchange must know exactly what
to do with a message it receives. Should it be appended to a particular queue? Should it be appended to many queues?
Or should it get discarded. The rules for that are defined by the exchange type.

There are a few exchange types available: DIRECT, TOPIC, HEADERS and FANOUT (see aio_pika.
ExchangeType). We’ll focus on the last one — the fanout. Let’s create an exchange of that type, and call it
logs:

logs_exchange = await channel.declare_exchange(
"logs", ExchangeType.FANOUT

)

The fanout exchange is very simple. As you can probably guess from the name, it just broadcasts all the messages it
receives to all the queues it knows. And that’s exactly what we need for our logger.

Note: Listing exchanges

To list the exchanges on the server you can run the ever useful rabbitmqctl:

$ sudo rabbitmqctl list_exchanges
Listing exchanges ...
logs fanout
amq.direct direct
amq.topic topic

(continues on next page)

34 Chapter 4. Table Of Contents



aio-pika Documentation, Release 7.0.1

(continued from previous page)

amq.fanout fanout
amq.headers headers
...done.

In this list there are some amq.* exchanges and the default (unnamed) exchange. These are created by default, but it
is unlikely you’ll need to use them at the moment.

Nameless exchange

In previous parts of the tutorial we knew nothing about exchanges, but still were able to send messages to queues. That
was possible because we were using a default exchange, which we identify by the empty string (“”).

Recall how we published a message before:

await channel.default_exchange.publish(
Message(message_body),
routing_key='hello',

)

The exchange parameter is the name of the exchange. The empty string denotes the default or nameless exchange:
messages are routed to the queue with the name specified by routing_key, if it exists.

Now, we can publish to our named exchange instead:

message_body = b" ".join(
arg.encode() for arg in sys.argv[1:]) or b"Hello World!"

message = Message(
message_body,
delivery_mode=DeliveryMode.PERSISTENT

)

# Sending the message
await logs_exchange.publish(message, routing_key="info")

Temporary queues

As you may remember previously we were using queues which had a specified name (remember hello and
task_queue?). Being able to name a queue was crucial for us — we needed to point the workers to the same queue.
Giving a queue a name is important when you want to share the queue between producers and consumers.

But that’s not the case for our logger. We want to hear about all log messages, not just a subset of them. We’re also
interested only in currently flowing messages not in the old ones. To solve that we need two things.

Firstly, whenever we connect to Rabbit we need a fresh, empty queue. To do it we could create a queue with a random
name, or, even better - let the server choose a random queue name for us. We can do this by not supplying the queue
parameter to declare_queue:

queue = await channel.declare_queue()

Secondly, once we disconnect the consumer the queue should be deleted. There’s an exclusive flag for that:

queue = await channel.declare_queue(exclusive=True)

4.3. RabbitMQ tutorial 35



aio-pika Documentation, Release 7.0.1

Bindings

We’ve already created a fanout exchange and a queue. Now we need to tell the exchange to send messages to our
queue. That relationship between exchange and a queue is called a binding.

logs_exchange = await channel.declare_exchange(
"logs", ExchangeType.FANOUT

)

# Declaring queue
queue = await channel.declare_queue(exclusive=True)

# Binding the queue to the exchange
await queue.bind(logs_exchange)

From now on the logs exchange will append messages to our queue.

Note: Listing bindings

You can list existing bindings using, you guessed it, rabbitmqctl list_bindings.

Putting it all together

The producer program, which emits log messages, doesn’t look much different from the previous tutorial. The most
important change is that we now want to publish messages to our logs exchange instead of the nameless one. We
need to supply a routing_key when sending, but its value is ignored for fanout exchanges. Here goes the code for
emit_log.py script:

import sys
import asyncio

(continues on next page)

36 Chapter 4. Table Of Contents



aio-pika Documentation, Release 7.0.1

(continued from previous page)

from aio_pika import connect, Message, DeliveryMode, ExchangeType

async def main(loop):
# Perform connection
connection = await connect(

"amqp://guest:guest@localhost/", loop=loop
)

# Creating a channel
channel = await connection.channel()

logs_exchange = await channel.declare_exchange(
"logs", ExchangeType.FANOUT

)

message_body = b" ".join(
arg.encode() for arg in sys.argv[1:]) or b"Hello World!"

message = Message(
message_body,
delivery_mode=DeliveryMode.PERSISTENT

)

# Sending the message
await logs_exchange.publish(message, routing_key="info")

print(" [x] Sent %r" % message)

await connection.close()

if __name__ == "__main__":
loop = asyncio.get_event_loop()
loop.run_until_complete(main(loop))

As you see, after establishing the connection we declared the exchange. This step is necessary as publishing to a
non-existing exchange is forbidden.

The messages will be lost if no queue is bound to the exchange yet, but that’s okay for us; if no consumer is listening
yet we can safely discard the message.

The code for receive_logs.py script:

import asyncio
from aio_pika import connect, IncomingMessage, ExchangeType

loop = asyncio.get_event_loop()

async def on_message(message: IncomingMessage):
async with message.process():

print("[x] %r" % message.body)

async def main():
# Perform connection

(continues on next page)

4.3. RabbitMQ tutorial 37



aio-pika Documentation, Release 7.0.1

(continued from previous page)

connection = await connect(
"amqp://guest:guest@localhost/", loop=loop

)

# Creating a channel
channel = await connection.channel()
await channel.set_qos(prefetch_count=1)

logs_exchange = await channel.declare_exchange(
"logs", ExchangeType.FANOUT

)

# Declaring queue
queue = await channel.declare_queue(exclusive=True)

# Binding the queue to the exchange
await queue.bind(logs_exchange)

# Start listening the queue with name 'task_queue'
await queue.consume(on_message)

if __name__ == "__main__":
loop = asyncio.get_event_loop()
loop.create_task(main())

# we enter a never-ending loop that waits for data
# and runs callbacks whenever necessary.
print(" [*] Waiting for logs. To exit press CTRL+C")
loop.run_forever()

We’re done. If you want to save logs to a file, just open a console and type:

$ python receive_logs.py > logs_from_rabbit.log

If you wish to see the logs on your screen, spawn a new terminal and run:

$ python receive_logs.py

And of course, to emit logs type:

$ python emit_log.py

Using rabbitmqctl list_bindings you can verify that the code actually creates bindings and queues as we want. With
two receive_logs.py programs running you should see something like:

$ sudo rabbitmqctl list_bindings
Listing bindings ...
logs exchange amq.gen-JzTY20BRgKO-HjmUJj0wLg queue []
logs exchange amq.gen-vso0PVvyiRIL2WoV3i48Yg queue []
...done.

The interpretation of the result is straightforward: data from exchange logs goes to two queues with server-assigned
names. And that’s exactly what we intended.

To find out how to listen for a subset of messages, let’s move on to tutorial 4

38 Chapter 4. Table Of Contents



aio-pika Documentation, Release 7.0.1

Note: This material was adopted from official tutorial on rabbitmq.org.

4.3.4 Routing

Warning: This is a beta version of the port from official tutorial. Please when you found an error create issue or
pull request for me.

Note: Using the aio-pika async Python client

Note: Prerequisites

This tutorial assumes RabbitMQ is installed and running on localhost on standard port (5672). In case you use a
different host, port or credentials, connections settings would require adjusting.

Where to get help

If you’re having trouble going through this tutorial you can contact us through the mailing list.

In the previous tutorial we built a simple logging system. We were able to broadcast log messages to many receivers.

In this tutorial we’re going to add a feature to it — we’re going to make it possible to subscribe only to a subset of the
messages. For example, we will be able to direct only critical error messages to the log file (to save disk space), while
still being able to print all of the log messages on the console.

Bindings

In previous examples we were already creating bindings. You may recall code like:

async def main():
...

# Binding the queue to the exchange
await queue.bind(logs_exchange)

...

A binding is a relationship between an exchange and a queue. This can be simply read as: the queue is interested in
messages from this exchange.

Bindings can take an extra routing_key parameter. To avoid the confusion with a basic_publish parameter we’re going
to call it a binding key. This is how we could create a binding with a key:

async def main():
...

# Binding the queue to the exchange
await queue.bind(logs_exchange,

routing_key="black")

(continues on next page)

4.3. RabbitMQ tutorial 39

https://www.rabbitmq.com/tutorials/tutorial-three-python.html
https://www.rabbitmq.com/tutorials/tutorial-four-python.html
https://github.com/mosquito/aio-pika/issues
https://github.com/mosquito/aio-pika/compare
https://github.com/mosquito/aio-pika
https://www.rabbitmq.com/download.html
https://groups.google.com/forum/#!forum/rabbitmq-users


aio-pika Documentation, Release 7.0.1

(continued from previous page)

...

The meaning of a binding key depends on the exchange type. The fanout exchanges, which we used previously, simply
ignored its value.

Direct exchange

Our logging system from the previous tutorial broadcasts all messages to all consumers. We want to extend that to
allow filtering messages based on their severity. For example we may want the script which is writing log messages to
the disk to only receive critical errors, and not waste disk space on warning or info log messages.

We were using a fanout exchange, which doesn’t give us too much flexibility — it’s only capable of mindless broad-
casting.

We will use a direct exchange instead. The routing algorithm behind a direct exchange is simple — a message goes to
the queues whose binding key exactly matches the routing key of the message.

To illustrate that, consider the following setup:

In this setup, we can see the direct exchange X with two queues bound to it. The first queue is bound with binding key
orange, and the second has two bindings, one with binding key black and the other one with green.

In such a setup a message published to the exchange with a routing key orange will be routed to queue Q1. Messages
with a routing key of black or green will go to Q2. All other messages will be discarded.

40 Chapter 4. Table Of Contents



aio-pika Documentation, Release 7.0.1

Multiple bindings

It is perfectly legal to bind multiple queues with the same binding key. In our example we could add a binding
between X and Q1 with binding key black. In that case, the direct exchange will behave like fanout and will broadcast
the message to all the matching queues. A message with routing key black will be delivered to both Q1 and Q2.

Emitting logs

We’ll use this model for our logging system. Instead of fanout we’ll send messages to a direct exchange. We will
supply the log severity as a routing key. That way the receiving script will be able to select the severity it wants to
receive. Let’s focus on emitting logs first.

Like always we need to create an exchange first:

from aio_pika import ExchangeType

async def main():
...

direct_logs_exchange = await channel.declare_exchange(
'logs', ExchangeType.DIRECT

)

And we’re ready to send a message:

async def main():
...

await direct_logs_exchange.publish(
Message(message_body),
routing_key=severity,

)

To simplify things we will assume that ‘severity’ can be one of ‘info’, ‘warning’, ‘error’.

Subscribing

Receiving messages will work just like in the previous tutorial, with one exception - we’re going to create a new
binding for each severity we’re interested in.

4.3. RabbitMQ tutorial 41



aio-pika Documentation, Release 7.0.1

async def main():
...

# Declaring queue
queue = await channel.declare_queue(exclusive=True)

# Binding the queue to the exchange
await queue.bind(direct_logs_exchange,

routing_key=severity)

...

Putting it all together

The code for receive_logs_direct.py:

import sys
import asyncio
from aio_pika import connect, IncomingMessage, ExchangeType

def on_message(message: IncomingMessage):
with message.process():

print(" [x] %r:%r" % (message.routing_key, message.body))

async def main(loop):
# Perform connection
connection = await connect(

"amqp://guest:guest@localhost/", loop=loop
)

# Creating a channel
channel = await connection.channel()
await channel.set_qos(prefetch_count=1)

severities = sys.argv[1:]

if not severities:

(continues on next page)

42 Chapter 4. Table Of Contents



aio-pika Documentation, Release 7.0.1

(continued from previous page)

sys.stderr.write(
"Usage: %s [info] [warning] [error]\n" % sys.argv[0]

)
sys.exit(1)

# Declare an exchange
direct_logs_exchange = await channel.declare_exchange(

"logs", ExchangeType.DIRECT
)

# Declaring random queue
queue = await channel.declare_queue(durable=True)

for severity in severities:
await queue.bind(direct_logs_exchange, routing_key=severity)

# Start listening the random queue
await queue.consume(on_message)

if __name__ == "__main__":
loop = asyncio.get_event_loop()
loop.create_task(main(loop))

# we enter a never-ending loop that waits for data
# and runs callbacks whenever necessary.
print(" [*] Waiting for messages. To exit press CTRL+C")
loop.run_forever()

The code for emit_log_direct.py:

import sys
import asyncio
from aio_pika import connect, Message, DeliveryMode, ExchangeType

async def main(loop):
# Perform connection
connection = await connect(

"amqp://guest:guest@localhost/", loop=loop
)

# Creating a channel
channel = await connection.channel()

logs_exchange = await channel.declare_exchange(
"logs", ExchangeType.DIRECT

)

message_body = b" ".join(
arg.encode() for arg in sys.argv[2:]) or b"Hello World!"

message = Message(
message_body,
delivery_mode=DeliveryMode.PERSISTENT

)

(continues on next page)

4.3. RabbitMQ tutorial 43



aio-pika Documentation, Release 7.0.1

(continued from previous page)

# Sending the message
routing_key = sys.argv[1] if len(sys.argv) > 2 else "info"
await logs_exchange.publish(message, routing_key=routing_key)

print(" [x] Sent %r" % message.body)

await connection.close()

if __name__ == "__main__":
loop = asyncio.get_event_loop()
loop.run_until_complete(main(loop))

If you want to save only ‘warning’ and ‘error’ (and not ‘info’) log messages to a file, just open a console and type:

$ python receive_logs_direct.py warning error > logs_from_rabbit.log

If you’d like to see all the log messages on your screen, open a new terminal and do:

$ python receive_logs_direct.py info warning error
[*] Waiting for logs. To exit press CTRL+C

And, for example, to emit an error log message just type:

$ python emit_log_direct.py error "Run. Run. Or it will explode."
[x] Sent 'error':'Run. Run. Or it will explode.'

Move on to tutorial 5 to find out how to listen for messages based on a pattern.

Note: This material was adopted from official tutorial on rabbitmq.org.

4.3.5 Topics

Warning: This is a beta version of the port from official tutorial. Please when you found an error create issue or
pull request for me.

Note: Using the aio-pika async Python client

Note: Prerequisites

This tutorial assumes RabbitMQ is installed and running on localhost on standard port (5672). In case you use a
different host, port or credentials, connections settings would require adjusting.

Where to get help

If you’re having trouble going through this tutorial you can contact us through the mailing list.

In the previous tutorial we improved our logging system. Instead of using a fanout exchange only capable of dummy
broadcasting, we used a direct one, and gained a possibility of selectively receiving the logs.

44 Chapter 4. Table Of Contents

https://www.rabbitmq.com/tutorials/tutorial-four-python.html
https://www.rabbitmq.com/tutorials/tutorial-five-python.html
https://github.com/mosquito/aio-pika/issues
https://github.com/mosquito/aio-pika/compare
https://github.com/mosquito/aio-pika
https://www.rabbitmq.com/download.html
https://groups.google.com/forum/#!forum/rabbitmq-users


aio-pika Documentation, Release 7.0.1

Although using the direct exchange improved our system, it still has limitations — it can’t do routing based on multiple
criteria.

In our logging system we might want to subscribe to not only logs based on severity, but also based on the source
which emitted the log. You might know this concept from the syslog unix tool, which routes logs based on both
severity (info/warn/crit. . . ) and facility (auth/cron/kern. . . ).

That would give us a lot of flexibility - we may want to listen to just critical errors coming from ‘cron’ but also all logs
from ‘kern’.

To implement that in our logging system we need to learn about a more complex topic exchange.

Topic exchange

Messages sent to a topic exchange can’t have an arbitrary routing_key - it must be a list of words, delimited by dots.
The words can be anything, but usually they specify some features connected to the message. A few valid routing key
examples: “stock.usd.nyse”, “nyse.vmw”, “quick.orange.rabbit”. There can be as many words in the routing key as
you like, up to the limit of 255 bytes.

The binding key must also be in the same form. The logic behind the topic exchange is similar to a direct one - a
message sent with a particular routing key will be delivered to all the queues that are bound with a matching binding
key. However there are two important special cases for binding keys:

• * (star) can substitute for exactly one word.

• # (hash) can substitute for zero or more words.

It’s easiest to explain this in an example:

In this example, we’re going to send messages which all describe animals. The messages will be sent with a routing
key that consists of three words (two dots). The first word in the routing key will describe a celerity, second a colour
and third a species: “<celerity>.<colour>.<species>”.

We created three bindings: Q1 is bound with binding key “*.orange.*” and Q2 with “*.*.rabbit” and “lazy.#”.

These bindings can be summarised as:

• Q1 is interested in all the orange animals.

• Q2 wants to hear everything about rabbits, and everything about lazy animals.

• A message with a routing key set to “quick.orange.rabbit” will be delivered to both queues. Message
“lazy.orange.elephant” also will go to both of them. On the other hand “quick.orange.fox” will only go to
the first queue, and “lazy.brown.fox” only to the second. “lazy.pink.rabbit” will be delivered to the second

4.3. RabbitMQ tutorial 45

http://en.wikipedia.org/wiki/Syslog


aio-pika Documentation, Release 7.0.1

queue only once, even though it matches two bindings. “quick.brown.fox” doesn’t match any binding so it will
be discarded.

What happens if we break our contract and send a message with one or four words, like “orange” or
“quick.orange.male.rabbit”? Well, these messages won’t match any bindings and will be lost.

On the other hand “lazy.orange.male.rabbit”, even though it has four words, will match the last binding and will be
delivered to the second queue.

Note: Topic exchange

Topic exchange is powerful and can behave like other exchanges.

When a queue is bound with “#” (hash) binding key - it will receive all the messages, regardless of the routing key -
like in fanout exchange.

When special characters “*” (star) and “#” (hash) aren’t used in bindings, the topic exchange will behave just like a
direct one.

Putting it all together

We’re going to use a topic exchange in our logging system. We’ll start off with a working assumption that the routing
keys of logs will have two words: “<facility>.<severity>”.

The code is almost the same as in the previous tutorial.

The code for emit_log_topic.py:

import sys
import asyncio
from aio_pika import connect, Message, DeliveryMode, ExchangeType

async def main(loop):
# Perform connection
connection = await connect(

"amqp://guest:guest@localhost/", loop=loop
)

# Creating a channel
channel = await connection.channel()

topic_logs_exchange = await channel.declare_exchange(
"topic_logs", ExchangeType.TOPIC

)

routing_key = sys.argv[1] if len(sys.argv) > 2 else "anonymous.info"

message_body = b" ".join(
arg.encode() for arg in sys.argv[2:]) or b"Hello World!"

message = Message(
message_body,
delivery_mode=DeliveryMode.PERSISTENT

)

# Sending the message

(continues on next page)

46 Chapter 4. Table Of Contents



aio-pika Documentation, Release 7.0.1

(continued from previous page)

await topic_logs_exchange.publish(message, routing_key=routing_key)

print(" [x] Sent %r" % message)

await connection.close()

if __name__ == "__main__":
loop = asyncio.get_event_loop()
loop.run_until_complete(main(loop))

The code for receive_logs_topic.py:

import asyncio
import sys
from aio_pika import connect, IncomingMessage, ExchangeType

def on_message(message: IncomingMessage):
with message.process():

print(" [x] %r:%r" % (message.routing_key, message.body))

async def main(loop):
# Perform connection
connection = await connect(

"amqp://guest:guest@localhost/", loop=loop
)

# Creating a channel
channel = await connection.channel()
await channel.set_qos(prefetch_count=1)

# Declare an exchange
topic_logs_exchange = await channel.declare_exchange(

"topic_logs", ExchangeType.TOPIC
)

# Declaring queue
queue = await channel.declare_queue(

"task_queue", durable=True
)

binding_keys = sys.argv[1:]

if not binding_keys:
sys.stderr.write("Usage: %s [binding_key]...\n" % sys.argv[0])
sys.exit(1)

for binding_key in binding_keys:
await queue.bind(topic_logs_exchange, routing_key=binding_key)

# Start listening the queue with name 'task_queue'
await queue.consume(on_message)

if __name__ == "__main__":
(continues on next page)

4.3. RabbitMQ tutorial 47



aio-pika Documentation, Release 7.0.1

(continued from previous page)

loop = asyncio.get_event_loop()
loop.create_task(main(loop))

# we enter a never-ending loop that waits for
# data and runs callbacks whenever necessary.
print(" [*] Waiting for messages. To exit press CTRL+C")
loop.run_forever()

To receive all the logs run:

python receive_logs_topic.py "#"

To receive all logs from the facility “kern”:

python receive_logs_topic.py "kern.*"

Or if you want to hear only about “critical” logs:

python receive_logs_topic.py "*.critical"

You can create multiple bindings:

python receive_logs_topic.py "kern.*" "*.critical"

And to emit a log with a routing key “kern.critical” type:

python emit_log_topic.py "kern.critical" "A critical kernel error"

Have fun playing with these programs. Note that the code doesn’t make any assumption about the routing or binding
keys, you may want to play with more than two routing key parameters.

Move on to tutorial 6 to learn about RPC.

Note: This material was adopted from official tutorial on rabbitmq.org.

4.3.6 Remote procedure call (RPC)

Warning: This is a beta version of the port from official tutorial. Please when you found an error create issue or
pull request for me.

This implementation is a part of official tutorial. Since version 1.7.0 aio-pika has patterns submodule.

You might use aio_pika.patterns.RPC for real projects.

Note: Using the aio-pika async Python client

Note: Prerequisites

This tutorial assumes RabbitMQ is installed and running on localhost on standard port (5672). In case you use a
different host, port or credentials, connections settings would require adjusting.

48 Chapter 4. Table Of Contents

https://www.rabbitmq.com/tutorials/tutorial-five-python.html
https://www.rabbitmq.com/tutorials/tutorial-six-python.html
https://github.com/mosquito/aio-pika/issues
https://github.com/mosquito/aio-pika/compare
https://github.com/mosquito/aio-pika
https://github.com/mosquito/aio-pika
https://www.rabbitmq.com/download.html


aio-pika Documentation, Release 7.0.1

Where to get help

If you’re having trouble going through this tutorial you can contact us through the mailing list.

In the second tutorial we learned how to use Work Queues to distribute time-consuming tasks among multiple workers.

But what if we need to run a function on a remote computer and wait for the result? Well, that’s a different story. This
pattern is commonly known as Remote Procedure Call or RPC.

In this tutorial we’re going to use RabbitMQ to build an RPC system: a client and a scalable RPC server. As we don’t
have any time-consuming tasks that are worth distributing, we’re going to create a dummy RPC service that returns
Fibonacci numbers.

Client interface

To illustrate how an RPC service could be used we’re going to create a simple client class. It’s going to expose a
method named call which sends an RPC request and blocks until the answer is received:

async def main():
fibonacci_rpc = FibonacciRpcClient()
result = await fibonacci_rpc.call(4)
print("fib(4) is %r" % result)

Note: A note on RPC

Although RPC is a pretty common pattern in computing, it’s often criticised. The problems arise when a programmer
is not aware whether a function call is local or if it’s a slow RPC. Confusions like that result in an unpredictable
system and adds unnecessary complexity to debugging. Instead of simplifying software, misused RPC can result in
unmaintainable spaghetti code.

Bearing that in mind, consider the following advice:

• Make sure it’s obvious which function call is local and which is remote.

• Document your system. Make the dependencies between components clear.

• Handle error cases. How should the client react when the RPC server is down for a long time?

When in doubt avoid RPC. If you can, you should use an asynchronous pipeline - instead of RPC-like blocking, results
are asynchronously pushed to a next computation stage.

Callback queue

In general doing RPC over RabbitMQ is easy. A client sends a request message and a server replies with a response
message. In order to receive a response the client needs to send a ‘callback’ queue address with the request. Let’s try
it:

async def main():
...

# Queue for results
callback_queue = await channel.declare_queue(exclusive=True)

await channel.default_exchange.publish(
Message(

(continues on next page)

4.3. RabbitMQ tutorial 49

https://groups.google.com/forum/#!forum/rabbitmq-users


aio-pika Documentation, Release 7.0.1

(continued from previous page)

request,
reply_to=callback_queue.name

),
routing_key='rpc_queue'

)

# ... and some code to read a response message from the callback_queue ...

...

Note: Message properties

The AMQP protocol predefines a set of 14 properties that go with a message. Most of the properties are rarely used,
with the exception of the following:

• delivery_mode: Marks a message as persistent (with a value of 2) or transient (any other value). You may
remember this property from the second tutorial.

• content_type: Used to describe the mime-type of the encoding. For example for the often used JSON encoding
it is a good practice to set this property to: application/json.

• reply_to: Commonly used to name a callback queue.

• correlation_id: Useful to correlate RPC responses with requests.

See additional info in aio_pika.Message

Correlation id

In the method presented above we suggest creating a callback queue for every RPC request. That’s pretty inefficient,
but fortunately there is a better way - let’s create a single callback queue per client.

That raises a new issue, having received a response in that queue it’s not clear to which request the response belongs.
That’s when the correlation_id property is used. We’re going to set it to a unique value for every request. Later, when
we receive a message in the callback queue we’ll look at this property, and based on that we’ll be able to match a
response with a request. If we see an unknown correlation_id value, we may safely discard the message - it doesn’t
belong to our requests.

You may ask, why should we ignore unknown messages in the callback queue, rather than failing with an error? It’s
due to a possibility of a race condition on the server side. Although unlikely, it is possible that the RPC server will die
just after sending us the answer, but before sending an acknowledgment message for the request. If that happens, the
restarted RPC server will process the request again. That’s why on the client we must handle the duplicate responses
gracefully, and the RPC should ideally be idempotent.

50 Chapter 4. Table Of Contents



aio-pika Documentation, Release 7.0.1

Summary

Our RPC will work like this:

• When the Client starts up, it creates an anonymous exclusive callback queue.

• For an RPC request, the Client sends a message with two properties: reply_to, which is set to the callback queue
and correlation_id, which is set to a unique value for every request.

• The request is sent to an rpc_queue queue.

• The RPC worker (aka: server) is waiting for requests on that queue. When a request appears, it does the job and
sends a message with the result back to the Client, using the queue from the reply_to field.

• The client waits for data on the callback queue. When a message appears, it checks the correlation_id property.
If it matches the value from the request it returns the response to the application.

Putting it all together

The code for rpc_server.py:

1 import asyncio
2 from functools import partial
3 from aio_pika import connect, IncomingMessage, Exchange, Message
4

5

6 def fib(n):
7 if n == 0:
8 return 0
9 elif n == 1:

10 return 1
11 else:
12 return fib(n - 1) + fib(n - 2)
13

14

15 async def on_message(exchange: Exchange, message: IncomingMessage):
16 with message.process():
17 n = int(message.body.decode())
18

19 print(" [.] fib(%d)" % n)
20 response = str(fib(n)).encode()
21

(continues on next page)

4.3. RabbitMQ tutorial 51



aio-pika Documentation, Release 7.0.1

(continued from previous page)

22 await exchange.publish(
23 Message(
24 body=response,
25 correlation_id=message.correlation_id
26 ),
27 routing_key=message.reply_to,
28 )
29 print("Request complete")
30

31

32 async def main(loop):
33 # Perform connection
34 connection = await connect(
35 "amqp://guest:guest@localhost/", loop=loop
36 )
37

38 # Creating a channel
39 channel = await connection.channel()
40

41 # Declaring queue
42 queue = await channel.declare_queue("rpc_queue")
43

44 # Start listening the queue with name 'hello'
45 await queue.consume(partial(
46 on_message, channel.default_exchange)
47 )
48

49

50 if __name__ == "__main__":
51 loop = asyncio.get_event_loop()
52 loop.create_task(main(loop))
53

54 # we enter a never-ending loop that waits for data
55 # and runs callbacks whenever necessary.
56 print(" [x] Awaiting RPC requests")
57 loop.run_forever()

The server code is rather straightforward:

• (34) As usual we start by establishing the connection and declaring the queue.

• (6) We declare our fibonacci function. It assumes only valid positive integer input. (Don’t expect this one to
work for big numbers, it’s probably the slowest recursive implementation possible).

• (15) We declare a callback for basic_consume, the core of the RPC server. It’s executed when the request is
received. It does the work and sends the response back.

The code for rpc_client.py:

1 import asyncio
2 import uuid
3 from aio_pika import connect, IncomingMessage, Message
4

5

6 class FibonacciRpcClient:
7 def __init__(self, loop):
8 self.connection = None
9 self.channel = None

(continues on next page)

52 Chapter 4. Table Of Contents



aio-pika Documentation, Release 7.0.1

(continued from previous page)

10 self.callback_queue = None
11 self.futures = {}
12 self.loop = loop
13

14 async def connect(self):
15 self.connection = await connect(
16 "amqp://guest:guest@localhost/", loop=loop
17 )
18 self.channel = await self.connection.channel()
19 self.callback_queue = await self.channel.declare_queue(exclusive=True)
20 await self.callback_queue.consume(self.on_response)
21

22 return self
23

24 def on_response(self, message: IncomingMessage):
25 future = self.futures.pop(message.correlation_id)
26 future.set_result(message.body)
27

28 async def call(self, n):
29 correlation_id = str(uuid.uuid4())
30 future = self.loop.create_future()
31

32 self.futures[correlation_id] = future
33

34 await self.channel.default_exchange.publish(
35 Message(
36 str(n).encode(),
37 content_type="text/plain",
38 correlation_id=correlation_id,
39 reply_to=self.callback_queue.name,
40 ),
41 routing_key="rpc_queue",
42 )
43

44 return int(await future)
45

46

47 async def main(loop):
48 fibonacci_rpc = await FibonacciRpcClient(loop).connect()
49 print(" [x] Requesting fib(30)")
50 response = await fibonacci_rpc.call(30)
51 print(" [.] Got %r" % response)
52

53

54 if __name__ == "__main__":
55 loop = asyncio.get_event_loop()
56 loop.run_until_complete(main(loop))

The client code is slightly more involved:

• (15) We establish a connection, channel and declare an exclusive ‘callback’ queue for replies.

• (22) We subscribe to the ‘callback’ queue, so that we can receive RPC responses.

• (26) The ‘on_response’ callback executed on every response is doing a very simple job, for every response
message it checks if the correlation_id is the one we’re looking for. If so, it saves the response in self.response
and breaks the consuming loop.

• (30) Next, we define our main call method - it does the actual RPC request.

4.3. RabbitMQ tutorial 53



aio-pika Documentation, Release 7.0.1

• (31) In this method, first we generate a unique correlation_id number and save it - the ‘on_response’ callback
function will use this value to catch the appropriate response.

• (36) Next, we publish the request message, with two properties: reply_to and correlation_id. And finally we
return the response back to the user.

Our RPC service is now ready. We can start the server:

$ python rpc_server.py
[x] Awaiting RPC requests

To request a fibonacci number run the client:

$ python rpc_client.py
[x] Requesting fib(30)

The presented design is not the only possible implementation of a RPC service, but it has some important advantages:

If the RPC server is too slow, you can scale up by just running another one. Try running a second rpc_server.py in a
new console. On the client side, the RPC requires sending and receiving only one message. No synchronous calls like
queue_declare are required. As a result the RPC client needs only one network round trip for a single RPC request.
Our code is still pretty simplistic and doesn’t try to solve more complex (but important) problems, like:

• How should the client react if there are no servers running?

• Should a client have some kind of timeout for the RPC?

• If the server malfunctions and raises an exception, should it be forwarded to the client?

• Protecting against invalid incoming messages (eg checking bounds) before processing.

Note: If you want to experiment, you may find the rabbitmq-management plugin useful for viewing the queues.

Note: This material was adopted from official tutorial on rabbitmq.org.

4.4 API Reference

aio_pika.AMQPException
alias of aiormq.exceptions.AMQPError

class aio_pika.Channel(connection: aio_pika.abc.AbstractConnection, channel_number: Op-
tional[int] = None, publisher_confirms: bool = True, on_return_raises: bool
= False)

Channel abstraction

Parameters

• connection – aio_pika.adapter.AsyncioConnection instance

• loop – Event loop (asyncio.get_event_loop() when None)

• future_store – aio_pika.common.FutureStore instance

• publisher_confirms – False if you don’t need delivery confirmations (in pursuit of
performance)

54 Chapter 4. Table Of Contents

https://www.rabbitmq.com/tutorials/tutorial-six-python.html


aio-pika Documentation, Release 7.0.1

EXCHANGE_CLASS
alias of aio_pika.exchange.Exchange

QUEUE_CLASS
alias of aio_pika.queue.Queue

declare_exchange(name: str, type: Union[aio_pika.abc.ExchangeType, str] = <Ex-
changeType.DIRECT: ’direct’>, *, durable: bool = False, auto_delete:
bool = False, internal: bool = False, passive: bool = False, arguments:
Optional[Dict[str, FieldValue]] = None, timeout: Union[float, int, None] =
None)→ aio_pika.abc.AbstractExchange

Declare an exchange.

Parameters

• name – string with exchange name or aio_pika.exchange.Exchange instance

• type – Exchange type. Enum ExchangeType value or string. String values must be one
of ‘fanout’, ‘direct’, ‘topic’, ‘headers’, ‘x-delayed-message’, ‘x-consistent-hash’.

• durable – Durability (exchange survive broker restart)

• auto_delete – Delete queue when channel will be closed.

• internal – Do not send it to broker just create an object

• passive – Do not fail when entity was declared previously but has another params.
Raises aio_pika.exceptions.ChannelClosed when exchange doesn’t exist.

• arguments – additional arguments

• timeout – execution timeout

Returns aio_pika.exchange.Exchange instance

declare_queue(name: str = None, *, durable: bool = False, exclusive: bool = False, passive: bool
= False, auto_delete: bool = False, arguments: Optional[Dict[str, FieldValue]] =
None, timeout: Union[float, int, None] = None)→ aio_pika.abc.AbstractQueue

Parameters

• name – queue name

• durable – Durability (queue survive broker restart)

• exclusive – Makes this queue exclusive. Exclusive queues may only be accessed by
the current connection, and are deleted when that connection closes. Passive declaration
of an exclusive queue by other connections are not allowed.

• passive – Do not fail when entity was declared previously but has another params.
Raises aio_pika.exceptions.ChannelClosed when queue doesn’t exist.

• auto_delete – Delete queue when channel will be closed.

• arguments – additional arguments

• timeout – execution timeout

Returns aio_pika.queue.Queue instance

Raises aio_pika.exceptions.ChannelClosed instance

get_exchange(name: str, *, ensure: bool = True)→ aio_pika.abc.AbstractExchange
With ensure=True, it’s a shortcut for .declare_exchange(..., passive=True); otherwise,
it returns an exchange instance without checking its existence.

4.4. API Reference 55



aio-pika Documentation, Release 7.0.1

When the exchange does not exist, if ensure=True, will raise aio_pika.exceptions.
ChannelClosed.

Use this method in a separate channel (or as soon as channel created). This is only a way to get an exchange
without declaring a new one.

Parameters

• name – exchange name

• ensure – ensure that the exchange exists

Returns aio_pika.exchange.Exchange instance

Raises aio_pika.exceptions.ChannelClosed instance

get_queue(name: str, *, ensure: bool = True)→ aio_pika.abc.AbstractQueue
With ensure=True, it’s a shortcut for .declare_queue(..., passive=True); otherwise, it
returns a queue instance without checking its existence.

When the queue does not exist, if ensure=True, will raise aio_pika.exceptions.
ChannelClosed.

Use this method in a separate channel (or as soon as channel created). This is only a way to get a queue
without declaring a new one.

Parameters

• name – queue name

• ensure – ensure that the queue exists

Returns aio_pika.queue.Queue instance

Raises aio_pika.exceptions.ChannelClosed instance

is_closed
Returns True when the channel has been closed from the broker side or after the close() method has been
called.

is_initialized
Returns True when the channel has been opened and ready for interaction

class aio_pika.Connection(url: yarl.URL, loop: Optional[asyncio.events.AbstractEventLoop] =
None, **kwargs)

Connection abstraction

CHANNEL_CLASS
alias of aio_pika.channel.Channel

channel(channel_number: int = None, publisher_confirms: bool = True, on_return_raises: bool =
False)→ aio_pika.abc.AbstractChannel

Coroutine which returns new instance of Channel.

Example:

import aio_pika

async def main(loop):
connection = await aio_pika.connect(

"amqp://guest:guest@127.0.0.1/"
)

channel1 = connection.channel()

(continues on next page)

56 Chapter 4. Table Of Contents



aio-pika Documentation, Release 7.0.1

(continued from previous page)

await channel1.close()

# Creates channel with specific channel number
channel42 = connection.channel(42)
await channel42.close()

# For working with transactions
channel_no_confirms = connection.channel(

publisher_confirms=True
)
await channel_no_confirms.close()

Also available as an asynchronous context manager:

import aio_pika

async def main(loop):
connection = await aio_pika.connect(

"amqp://guest:guest@127.0.0.1/"
)

async with connection.channel() as channel:
# channel is open and available

# channel is now closed

Parameters

• channel_number – specify the channel number explicit

• publisher_confirms – if True the aio_pika.Exchange.publish() method
will be return bool after publish is complete. Otherwise the aio_pika.Exchange.
publish() method will be return None

• on_return_raises – raise an aio_pika.exceptions.DeliveryError
when mandatory message will be returned

connect(timeout: Union[float, int, None] = None, **kwargs)→ None
Connect to AMQP server. This method should be called after aio_pika.connection.
Connection.__init__()

Note: This method is called by connect(). You shouldn’t call it explicitly.

class aio_pika.DeliveryMode
An enumeration.

class aio_pika.Exchange(connection: aio_pika.abc.AbstractConnection, chan-
nel: aio_pika.abc.AbstractChannel, name: str, type:
Union[aio_pika.abc.ExchangeType, str] = <ExchangeType.DIRECT:
’direct’>, *, auto_delete: bool = False, durable: bool = False, internal:
bool = False, passive: bool = False, arguments: Optional[Dict[str,
FieldValue]] = None)

Exchange abstraction

4.4. API Reference 57



aio-pika Documentation, Release 7.0.1

bind(exchange: Union[AbstractExchange, str], routing_key: str = ”, *, arguments: Op-
tional[Dict[str, FieldValue]] = None, timeout: Union[float, int, None] = None) →
pamqp.commands.Exchange.BindOk

A binding can also be a relationship between two exchanges. This can be simply read as: this exchange is
interested in messages from another exchange.

Bindings can take an extra routing_key parameter. To avoid the confusion with a basic_publish parameter
we’re going to call it a binding key.

client = await connect()

routing_key = 'simple_routing_key'
src_exchange_name = "source_exchange"
dest_exchange_name = "destination_exchange"

channel = await client.channel()
src_exchange = await channel.declare_exchange(

src_exchange_name, auto_delete=True
)
dest_exchange = await channel.declare_exchange(

dest_exchange_name, auto_delete=True
)
queue = await channel.declare_queue(auto_delete=True)

await queue.bind(dest_exchange, routing_key)
await dest_exchange.bind(src_exchange, routing_key)

Parameters

• exchange – aio_pika.exchange.Exchange instance

• routing_key – routing key

• arguments – additional arguments

• timeout – execution timeout

Returns None

delete(if_unused: bool = False, timeout: Union[float, int, None] = None) →
pamqp.commands.Exchange.DeleteOk

Delete the queue

Parameters

• timeout – operation timeout

• if_unused – perform deletion when queue has no bindings.

publish(message: aio_pika.abc.AbstractMessage, routing_key: str, *, mandatory:
bool = True, immediate: bool = False, timeout: Union[float, int, None] =
None) → Union[pamqp.commands.Basic.Ack, pamqp.commands.Basic.Nack,
pamqp.commands.Basic.Reject, None]

Publish the message to the queue. aio-pika uses publisher confirms extension for message delivery.

unbind(exchange: Union[AbstractExchange, str], routing_key: str = ”, arguments: Op-
tional[Dict[str, FieldValue]] = None, timeout: Union[float, int, None] = None) →
pamqp.commands.Exchange.UnbindOk

Remove exchange-to-exchange binding for this Exchange instance

Parameters

58 Chapter 4. Table Of Contents

https://www.rabbitmq.com/confirms.html


aio-pika Documentation, Release 7.0.1

• exchange – aio_pika.exchange.Exchange instance

• routing_key – routing key

• arguments – additional arguments

• timeout – execution timeout

Returns None

class aio_pika.ExchangeType
An enumeration.

class aio_pika.IncomingMessage(message: aiormq.abc.DeliveredMessage, no_ack: bool = False)
Incoming message is seems like Message but has additional methods for message acknowledgement.

Depending on the acknowledgement mode used, RabbitMQ can consider a message to be successfully delivered
either immediately after it is sent out (written to a TCP socket) or when an explicit (“manual”) client acknowl-
edgement is received. Manually sent acknowledgements can be positive or negative and use one of the following
protocol methods:

• basic.ack is used for positive acknowledgements

• basic.nack is used for negative acknowledgements (note: this is a RabbitMQ extension to AMQP 0-9-1)

• basic.reject is used for negative acknowledgements but has one limitations compared to basic.nack

Positive acknowledgements simply instruct RabbitMQ to record a message as delivered. Negative acknowl-
edgements with basic.reject have the same effect. The difference is primarily in the semantics: positive ac-
knowledgements assume a message was successfully processed while their negative counterpart suggests that a
delivery wasn’t processed but still should be deleted.

Create an instance of IncomingMessage

ack(multiple: bool = False)→ None
Send basic.ack is used for positive acknowledgements

Note: This method looks like a blocking-method, but actually it just sends bytes to the socket and doesn’t
require any responses from the broker.

Parameters multiple – If set to True, the message’s delivery tag is treated as “up to and
including”, so that multiple messages can be acknowledged with a single method. If set to
False, the ack refers to a single message.

Returns None

info()→ dict
Method returns dict representation of the message

process(requeue: bool = False, reject_on_redelivered: bool = False, ignore_processed: bool = False)
→ aio_pika.abc.AbstractProcessContext

Context manager for processing the message

>>> async def on_message_received(message: IncomingMessage):
... async with message.process():
... # When exception will be raised
... # the message will be rejected
... print(message.body)

Example with ignore_processed=True

4.4. API Reference 59



aio-pika Documentation, Release 7.0.1

>>> async def on_message_received(message: IncomingMessage):
... async with message.process(ignore_processed=True):
... # Now (with ignore_processed=True) you may reject
... # (or ack) message manually too
... if True: # some reasonable condition here
... await message.reject()
... print(message.body)

Parameters

• requeue – Requeue message when exception.

• reject_on_redelivered – When True message will be rejected only when message
was redelivered.

• ignore_processed – Do nothing if message already processed

reject(requeue: bool = False)→ None
When requeue=True the message will be returned to queue. Otherwise message will be dropped.

Note: This method looks like a blocking-method, but actually it just sends bytes to the socket and doesn’t
require any responses from the broker.

Parameters requeue – bool

class aio_pika.Message(body: bytes, *, headers: MutableMapping[str, Union[bool, bytear-
ray, decimal.Decimal, List[FieldValue], Dict[str, FieldValue], float,
int, None, str, datetime.datetime, bytes, Set[Union[bool, bytearray,
decimal.Decimal, List[FieldValue], Dict[str, FieldValue], float, int,
None, str, datetime.datetime, bytes]], Tuple[Union[bool, bytearray, dec-
imal.Decimal, List[FieldValue], Dict[str, FieldValue], float, int, None,
str, datetime.datetime, bytes], ...], FrozenSet[Union[bool, bytearray, dec-
imal.Decimal, List[FieldValue], Dict[str, FieldValue], float, int, None,
str, datetime.datetime, bytes]]]] = None, content_type: Optional[str]
= None, content_encoding: Optional[str] = None, delivery_mode:
Union[aio_pika.abc.DeliveryMode, int] = None, priority: Optional[int] =
None, correlation_id: Optional[str] = None, reply_to: Optional[str] = None,
expiration: Union[int, datetime.datetime, float, datetime.timedelta, None]
= None, message_id: Optional[str] = None, timestamp: Union[int, date-
time.datetime, float, datetime.timedelta, None] = None, type: Optional[str]
= None, user_id: Optional[str] = None, app_id: Optional[str] = None)

AMQP message abstraction

Creates a new instance of Message

Parameters

• body – message body

• headers – message headers

• headers_raw – message raw headers

• content_type – content type

• content_encoding – content encoding

• delivery_mode – delivery mode

60 Chapter 4. Table Of Contents



aio-pika Documentation, Release 7.0.1

• priority – priority

• correlation_id – correlation id

• reply_to – reply to

• expiration – expiration in seconds (or datetime or timedelta)

• message_id – message id

• timestamp – timestamp

• type – type

• user_id – user id

• app_id – app id

info()→ dict
Create a dict with message attributes

{
"body_size": 100,
"headers": {},
"content_type": "text/plain",
"content_encoding": "",
"delivery_mode": DeliveryMode.NOT_PERSISTENT,
"priority": 0,
"correlation_id": "",
"reply_to": "",
"expiration": "",
"message_id": "",
"timestamp": "",
"type": "",
"user_id": "",
"app_id": "",

}

lock()→ None
Set lock flag to True

locked
is message locked

Returns bool

properties
Build aiormq.spec.Basic.Properties object

exception aio_pika.MessageProcessError

class aio_pika.Queue(channel: aio_pika.abc.AbstractChannel, name: Optional[str], durable: bool,
exclusive: bool, auto_delete: bool, arguments: Optional[Dict[str, FieldValue]],
passive: bool = False)

AMQP queue abstraction

bind(exchange: Union[AbstractExchange, str], routing_key: str = None, *, arguments: Op-
tional[Dict[str, FieldValue]] = None, timeout: Union[float, int, None] = None) →
pamqp.commands.Queue.BindOk

A binding is a relationship between an exchange and a queue. This can be simply read as: the queue is
interested in messages from this exchange.

Bindings can take an extra routing_key parameter. To avoid the confusion with a basic_publish parameter
we’re going to call it a binding key.

4.4. API Reference 61



aio-pika Documentation, Release 7.0.1

Parameters

• exchange – aio_pika.exchange.Exchange instance

• routing_key – routing key

• arguments – additional arguments

• timeout – execution timeout

Raises asyncio.TimeoutError – when the binding timeout period has elapsed.

Returns None

cancel(consumer_tag: str, timeout: Union[float, int, None] = None, nowait: bool = False) →
pamqp.commands.Basic.CancelOk

This method cancels a consumer. This does not affect already delivered messages, but it does mean the
server will not send any more messages for that consumer. The client may receive an arbitrary number
of messages in between sending the cancel method and receiving the cancel-ok reply. It may also be sent
from the server to the client in the event of the consumer being unexpectedly cancelled (i.e. cancelled for
any reason other than the server receiving the corresponding basic.cancel from the client). This allows
clients to be notified of the loss of consumers due to events such as queue deletion.

Parameters

• consumer_tag – consumer tag returned by consume()

• timeout – execution timeout

• nowait (bool) – Do not expect a Basic.CancelOk response

Returns Basic.CancelOk when operation completed successfully

consume(callback: Callable[[aio_pika.abc.AbstractIncomingMessage], Any], no_ack: bool = False,
exclusive: bool = False, arguments: Optional[Dict[str, FieldValue]] = None, consumer_tag:
str = None, timeout: Union[float, int, None] = None)→ str

Start to consuming the Queue.

Parameters

• timeout – asyncio.TimeoutError will be raises when the Future was not finished
after this time.

• callback – Consuming callback. Could be a coroutine.

• no_ack – if True you don’t need to call aio_pika.message.
IncomingMessage.ack()

• exclusive – Makes this queue exclusive. Exclusive queues may only be accessed by
the current connection, and are deleted when that connection closes. Passive declaration
of an exclusive queue by other connections are not allowed.

• arguments – additional arguments

• consumer_tag – optional consumer tag

Raises asyncio.TimeoutError – when the consuming timeout period has elapsed.

Return str consumer tag str

declare(timeout: Union[float, int, None] = None)→ pamqp.commands.Queue.DeclareOk
Declare queue.

Parameters

• timeout – execution timeout

62 Chapter 4. Table Of Contents



aio-pika Documentation, Release 7.0.1

• passive – Only check to see if the queue exists.

Returns None

delete(*, if_unused: bool = True, if_empty: bool = True, timeout: Union[float, int, None] = None)→
pamqp.commands.Queue.DeleteOk

Delete the queue.

Parameters

• if_unused – Perform delete only when unused

• if_empty – Perform delete only when empty

• timeout – execution timeout

Returns None

get(*, no_ack: bool = False, fail: bool = True, timeout: Union[float, int, None] = 5) → Op-
tional[aio_pika.message.IncomingMessage]
Get message from the queue.

Parameters

• no_ack – if True you don’t need to call aio_pika.message.
IncomingMessage.ack()

• timeout – execution timeout

• fail – Should return None instead of raise an exception aio_pika.exceptions.
QueueEmpty.

Returns aio_pika.message.IncomingMessage

iterator(**kwargs)→ aio_pika.abc.AbstractQueueIterator
Returns an iterator for async for expression.

Full example:

import aio_pika

async def main():
connection = await aio_pika.connect()

async with connection:
channel = await connection.channel()

queue = await channel.declare_queue('test')

async with queue.iterator() as q:
async for message in q:

print(message.body)

When your program runs with run_forever the iterator will be closed in background. In this case the
context processor for iterator might be skipped and the queue might be used in the “async for” expression
directly.

import aio_pika

async def main():
connection = await aio_pika.connect()

async with connection:

(continues on next page)

4.4. API Reference 63



aio-pika Documentation, Release 7.0.1

(continued from previous page)

channel = await connection.channel()

queue = await channel.declare_queue('test')

async for message in queue:
print(message.body)

Returns QueueIterator

purge(no_wait: bool = False, timeout: Union[float, int, None] = None) →
pamqp.commands.Queue.PurgeOk

Purge all messages from the queue.

Parameters

• no_wait – no wait response

• timeout – execution timeout

Returns None

unbind(exchange: Union[AbstractExchange, str], routing_key: str = None, arguments: Op-
tional[Dict[str, FieldValue]] = None, timeout: Union[float, int, None] = None) →
pamqp.commands.Queue.UnbindOk

Remove binding from exchange for this Queue instance

Parameters

• exchange – aio_pika.exchange.Exchange instance

• routing_key – routing key

• arguments – additional arguments

• timeout – execution timeout

Raises asyncio.TimeoutError – when the unbinding timeout period has elapsed.

Returns None

class aio_pika.RobustChannel(connection: aio_pika.abc.AbstractRobustConnection, chan-
nel_number: int = None, publisher_confirms: bool = True,
on_return_raises: bool = False)

Channel abstraction

Parameters

• connection – aio_pika.adapter.AsyncioConnection instance

• loop – Event loop (asyncio.get_event_loop() when None)

• future_store – aio_pika.common.FutureStore instance

• publisher_confirms – False if you don’t need delivery confirmations (in pursuit of
performance)

EXCHANGE_CLASS
alias of aio_pika.robust_exchange.RobustExchange

QUEUE_CLASS
alias of aio_pika.robust_queue.RobustQueue

64 Chapter 4. Table Of Contents



aio-pika Documentation, Release 7.0.1

declare_exchange(name: str, type: Union[aio_pika.abc.ExchangeType, str] = <Ex-
changeType.DIRECT: ’direct’>, durable: bool = False, auto_delete: bool
= False, internal: bool = False, passive: bool = False, arguments: dict =
None, timeout: Union[float, int, None] = None, robust: bool = True) →
aio_pika.abc.AbstractRobustExchange

Declare an exchange.

Parameters

• name – string with exchange name or aio_pika.exchange.Exchange instance

• type – Exchange type. Enum ExchangeType value or string. String values must be one
of ‘fanout’, ‘direct’, ‘topic’, ‘headers’, ‘x-delayed-message’, ‘x-consistent-hash’.

• durable – Durability (exchange survive broker restart)

• auto_delete – Delete queue when channel will be closed.

• internal – Do not send it to broker just create an object

• passive – Do not fail when entity was declared previously but has another params.
Raises aio_pika.exceptions.ChannelClosed when exchange doesn’t exist.

• arguments – additional arguments

• timeout – execution timeout

Returns aio_pika.exchange.Exchange instance

declare_queue(name: str = None, *, durable: bool = False, exclusive: bool = False, passive: bool
= False, auto_delete: bool = False, arguments: dict = None, timeout: Union[float,
int, None] = None, robust: bool = True)→ aio_pika.abc.AbstractRobustQueue

Parameters

• name – queue name

• durable – Durability (queue survive broker restart)

• exclusive – Makes this queue exclusive. Exclusive queues may only be accessed by
the current connection, and are deleted when that connection closes. Passive declaration
of an exclusive queue by other connections are not allowed.

• passive – Do not fail when entity was declared previously but has another params.
Raises aio_pika.exceptions.ChannelClosed when queue doesn’t exist.

• auto_delete – Delete queue when channel will be closed.

• arguments – additional arguments

• timeout – execution timeout

Returns aio_pika.queue.Queue instance

Raises aio_pika.exceptions.ChannelClosed instance

class aio_pika.RobustConnection(url: yarl.URL, loop: asyncio.events.AbstractEventLoop =
None, **kwargs)

Robust connection

CHANNEL_CLASS
alias of aio_pika.robust_channel.RobustChannel

add_reconnect_callback(callback: Callable[[RobustConnection], None], weak: bool = False)
→ None

Add callback which will be called after reconnect.

4.4. API Reference 65



aio-pika Documentation, Release 7.0.1

Returns None

channel(channel_number: int = None, publisher_confirms: bool = True, on_return_raises: bool =
False)→ aio_pika.abc.AbstractRobustChannel

Coroutine which returns new instance of Channel.

Example:

import aio_pika

async def main(loop):
connection = await aio_pika.connect(

"amqp://guest:guest@127.0.0.1/"
)

channel1 = connection.channel()
await channel1.close()

# Creates channel with specific channel number
channel42 = connection.channel(42)
await channel42.close()

# For working with transactions
channel_no_confirms = connection.channel(

publisher_confirms=True
)
await channel_no_confirms.close()

Also available as an asynchronous context manager:

import aio_pika

async def main(loop):
connection = await aio_pika.connect(

"amqp://guest:guest@127.0.0.1/"
)

async with connection.channel() as channel:
# channel is open and available

# channel is now closed

Parameters

• channel_number – specify the channel number explicit

• publisher_confirms – if True the aio_pika.Exchange.publish() method
will be return bool after publish is complete. Otherwise the aio_pika.Exchange.
publish() method will be return None

• on_return_raises – raise an aio_pika.exceptions.DeliveryError
when mandatory message will be returned

connect(timeout: Union[float, int, None] = None, **kwargs)→ None
Connect to AMQP server. This method should be called after aio_pika.connection.
Connection.__init__()

Note: This method is called by connect(). You shouldn’t call it explicitly.

66 Chapter 4. Table Of Contents



aio-pika Documentation, Release 7.0.1

is_closed
Is this connection is closed

class aio_pika.RobustExchange(connection: aio_pika.abc.AbstractConnection, chan-
nel: aio_pika.abc.AbstractChannel, name: str,
type: Union[aio_pika.abc.ExchangeType, str] = <Ex-
changeType.DIRECT: ’direct’>, *, auto_delete: bool = False,
durable: bool = False, internal: bool = False, passive: bool =
False, arguments: Optional[Dict[str, FieldValue]] = None)

Exchange abstraction

bind(exchange: Union[AbstractExchange, str], routing_key: str = ”, *, arguments: Optional[Dict[str,
FieldValue]] = None, timeout: Union[float, int, None] = None, robust: bool = True) →
pamqp.commands.Exchange.BindOk

A binding can also be a relationship between two exchanges. This can be simply read as: this exchange is
interested in messages from another exchange.

Bindings can take an extra routing_key parameter. To avoid the confusion with a basic_publish parameter
we’re going to call it a binding key.

client = await connect()

routing_key = 'simple_routing_key'
src_exchange_name = "source_exchange"
dest_exchange_name = "destination_exchange"

channel = await client.channel()
src_exchange = await channel.declare_exchange(

src_exchange_name, auto_delete=True
)
dest_exchange = await channel.declare_exchange(

dest_exchange_name, auto_delete=True
)
queue = await channel.declare_queue(auto_delete=True)

await queue.bind(dest_exchange, routing_key)
await dest_exchange.bind(src_exchange, routing_key)

Parameters

• exchange – aio_pika.exchange.Exchange instance

• routing_key – routing key

• arguments – additional arguments

• timeout – execution timeout

Returns None

unbind(exchange: Union[AbstractExchange, str], routing_key: str = ”, arguments: Op-
tional[Dict[str, FieldValue]] = None, timeout: Union[float, int, None] = None) →
pamqp.commands.Exchange.UnbindOk

Remove exchange-to-exchange binding for this Exchange instance

Parameters

• exchange – aio_pika.exchange.Exchange instance

• routing_key – routing key

• arguments – additional arguments

4.4. API Reference 67



aio-pika Documentation, Release 7.0.1

• timeout – execution timeout

Returns None

class aio_pika.RobustQueue(channel: aio_pika.abc.AbstractChannel, name: Optional[str],
durable: bool = False, exclusive: bool = False, auto_delete: bool =
False, arguments: Optional[Dict[str, FieldValue]] = None, passive:
bool = False)

bind(exchange: Union[AbstractExchange, str], routing_key: str = None, *, arguments: Op-
tional[Dict[str, FieldValue]] = None, timeout: Union[float, int, None] = None, robust: bool =
True)→ pamqp.commands.Queue.BindOk

A binding is a relationship between an exchange and a queue. This can be simply read as: the queue is
interested in messages from this exchange.

Bindings can take an extra routing_key parameter. To avoid the confusion with a basic_publish parameter
we’re going to call it a binding key.

Parameters

• exchange – aio_pika.exchange.Exchange instance

• routing_key – routing key

• arguments – additional arguments

• timeout – execution timeout

Raises asyncio.TimeoutError – when the binding timeout period has elapsed.

Returns None

cancel(consumer_tag: str, timeout: Union[float, int, None] = None, nowait: bool = False) →
pamqp.commands.Basic.CancelOk

This method cancels a consumer. This does not affect already delivered messages, but it does mean the
server will not send any more messages for that consumer. The client may receive an arbitrary number
of messages in between sending the cancel method and receiving the cancel-ok reply. It may also be sent
from the server to the client in the event of the consumer being unexpectedly cancelled (i.e. cancelled for
any reason other than the server receiving the corresponding basic.cancel from the client). This allows
clients to be notified of the loss of consumers due to events such as queue deletion.

Parameters

• consumer_tag – consumer tag returned by consume()

• timeout – execution timeout

• nowait (bool) – Do not expect a Basic.CancelOk response

Returns Basic.CancelOk when operation completed successfully

consume(callback: Callable[[aio_pika.abc.AbstractIncomingMessage], Any], no_ack: bool = False,
exclusive: bool = False, arguments: Optional[Dict[str, FieldValue]] = None, consumer_tag:
str = None, timeout: Union[float, int, None] = None, robust: bool = True)→ str

Start to consuming the Queue.

Parameters

• timeout – asyncio.TimeoutError will be raises when the Future was not finished
after this time.

• callback – Consuming callback. Could be a coroutine.

• no_ack – if True you don’t need to call aio_pika.message.
IncomingMessage.ack()

68 Chapter 4. Table Of Contents



aio-pika Documentation, Release 7.0.1

• exclusive – Makes this queue exclusive. Exclusive queues may only be accessed by
the current connection, and are deleted when that connection closes. Passive declaration
of an exclusive queue by other connections are not allowed.

• arguments – additional arguments

• consumer_tag – optional consumer tag

Raises asyncio.TimeoutError – when the consuming timeout period has elapsed.

Return str consumer tag str

unbind(exchange: Union[AbstractExchange, str], routing_key: str = None, arguments: Op-
tional[Dict[str, FieldValue]] = None, timeout: Union[float, int, None] = None) →
pamqp.commands.Queue.UnbindOk

Remove binding from exchange for this Queue instance

Parameters

• exchange – aio_pika.exchange.Exchange instance

• routing_key – routing key

• arguments – additional arguments

• timeout – execution timeout

Raises asyncio.TimeoutError – when the unbinding timeout period has elapsed.

Returns None

aio_pika.connect(url: Union[str, yarl.URL] = None, *, host: str = ’localhost’, port: int = 5672,
login: str = ’guest’, password: str = ’guest’, virtualhost: str = ’/’, ssl: bool
= False, loop: asyncio.events.AbstractEventLoop = None, ssl_options: dict =
None, timeout: Union[float, int, None] = None, client_properties: Dict[str, Field-
Value] = None, connection_class: Type[aio_pika.abc.AbstractConnection] = <class
’aio_pika.connection.Connection’>, **kwargs)→ aio_pika.abc.AbstractConnection

Make connection to the broker.

Example:

import aio_pika

async def main():
connection = await aio_pika.connect(

"amqp://guest:guest@127.0.0.1/"
)

Connect to localhost with default credentials:

import aio_pika

async def main():
connection = await aio_pika.connect()

Note:

The available keys for ssl_options parameter are:

• cert_reqs

• certfile

4.4. API Reference 69



aio-pika Documentation, Release 7.0.1

• keyfile

• ssl_version

For an information on what the ssl_options can be set to reference the official Python documentation .

Set connection name for RabbitMQ admin panel:

read_connection = await connect(
client_properties={

'connection_name': 'Read connection'
}

)

write_connection = await connect(
client_properties={

'connection_name': 'Write connection'
}

)

URL string might be contain ssl parameters e.g. amqps://user:pass@host//?ca_certs=ca.pem&certfile=crt.pem&keyfile=key.pem

Parameters

• client_properties – add custom client capability.

• url – RFC3986 formatted broker address. When None will be used keyword arguments.

• host – hostname of the broker

• port – broker port 5672 by default

• login – username string. ‘guest’ by default.

• password – password string. ‘guest’ by default.

• virtualhost – virtualhost parameter. ‘/’ by default

• ssl – use SSL for connection. Should be used with addition kwargs.

• ssl_options – A dict of values for the SSL connection.

• timeout – connection timeout in seconds

• loop – Event loop (asyncio.get_event_loop() when None)

• connection_class – Factory of a new connection

• kwargs – addition parameters which will be passed to the connection.

Returns aio_pika.connection.Connection

aio_pika.connect_robust(url: Union[str, yarl.URL] = None, *, host: str = ’localhost’,
port: int = 5672, login: str = ’guest’, password: str =
’guest’, virtualhost: str = ’/’, ssl: bool = False, loop: asyn-
cio.events.AbstractEventLoop = None, ssl_options: dict = None, timeout:
Union[float, int, None] = None, client_properties: Dict[str, FieldValue]
= None, connection_class: Type[aio_pika.abc.AbstractRobustConnection]
= <class ’aio_pika.robust_connection.RobustConnection’>, **kwargs)→
aio_pika.abc.AbstractRobustConnection

Make connection to the broker.

Example:

70 Chapter 4. Table Of Contents

https://goo.gl/pty9xA
https://goo.gl/MzgYAs


aio-pika Documentation, Release 7.0.1

import aio_pika

async def main():
connection = await aio_pika.connect(

"amqp://guest:guest@127.0.0.1/"
)

Connect to localhost with default credentials:

import aio_pika

async def main():
connection = await aio_pika.connect()

Note:

The available keys for ssl_options parameter are:

• cert_reqs

• certfile

• keyfile

• ssl_version

For an information on what the ssl_options can be set to reference the official Python documentation .

Set connection name for RabbitMQ admin panel:

read_connection = await connect(
client_properties={

'connection_name': 'Read connection'
}

)

write_connection = await connect(
client_properties={

'connection_name': 'Write connection'
}

)

URL string might be contain ssl parameters e.g. amqps://user:pass@host//?ca_certs=ca.pem&certfile=crt.pem&keyfile=key.pem

Parameters

• client_properties – add custom client capability.

• url – RFC3986 formatted broker address. When None will be used keyword arguments.

• host – hostname of the broker

• port – broker port 5672 by default

• login – username string. ‘guest’ by default.

• password – password string. ‘guest’ by default.

• virtualhost – virtualhost parameter. ‘/’ by default

• ssl – use SSL for connection. Should be used with addition kwargs.

4.4. API Reference 71

https://goo.gl/pty9xA
https://goo.gl/MzgYAs


aio-pika Documentation, Release 7.0.1

• ssl_options – A dict of values for the SSL connection.

• timeout – connection timeout in seconds

• loop – Event loop (asyncio.get_event_loop() when None)

• connection_class – Factory of a new connection

• kwargs – addition parameters which will be passed to the connection.

Returns aio_pika.connection.Connection

aio_pika.patterns.base
alias of aio_pika.patterns.base

class aio_pika.patterns.Master(channel: aio_pika.channel.Channel, requeue: bool = True, re-
ject_on_redelivered: bool = False)

Implements Master/Worker pattern. Usage example:

worker.py

master = Master(channel)
worker = await master.create_worker('test_worker', lambda x: print(x))

master.py

master = Master(channel)
await master.proxy.test_worker('foo')

Creates a new Master instance.

Parameters channel – Initialized instance of aio_pika.Channel

create_task(channel_name: str, kwargs: Mapping[str, Any] = mappingproxy({}), **mes-
sage_kwargs) → Union[pamqp.commands.Basic.Ack, pamqp.commands.Basic.Nack,
pamqp.commands.Basic.Reject, None]

Creates a new task for the worker

create_worker(channel_name: str, func: Callable[[...], Any], **kwargs) →
aio_pika.patterns.master.Worker

Creates a new Worker instance.

deserialize(data: bytes)→ Any
Deserialize data from bytes. Uses pickle by default. You should overlap this method when you want to
change serializer

Parameters data – Data which will be deserialized

Returns Any

serialize(data: Any)→ bytes
Serialize data to the bytes. Uses pickle by default. You should overlap this method when you want to
change serializer

Parameters data – Data which will be serialized

Returns bytes

class aio_pika.patterns.Worker(queue: aio_pika.abc.AbstractQueue, consumer_tag: str, loop:
asyncio.events.AbstractEventLoop)

close()→ Awaitable[None]
Cancel subscription to the channel

Returns asyncio.Task

72 Chapter 4. Table Of Contents



aio-pika Documentation, Release 7.0.1

class aio_pika.patterns.RPC(channel: aio_pika.channel.Channel)
Remote Procedure Call helper.

Create an instance

rpc = await RPC.create(channel)

Registering python function

# RPC instance passes only keyword arguments
def multiply(*, x, y):

return x * y

await rpc.register("multiply", multiply)

Call function through proxy

assert await rpc.proxy.multiply(x=2, y=3) == 6

Call function explicit

assert await rpc.call('multiply', dict(x=2, y=3)) == 6

call(method_name: str, kwargs: Optional[Dict[str, Any]] = None, *, expiration: Optional[int]
= None, priority: int = 5, delivery_mode: aio_pika.abc.DeliveryMode = <Delivery-
Mode.NOT_PERSISTENT: 1>)→ Any

Call remote method and awaiting result.

Parameters

• method_name – Name of method

• kwargs – Methos kwargs

• expiration – If not None messages which staying in queue longer will be returned and
asyncio.TimeoutError will be raised.

• priority – Message priority

• delivery_mode – Call message delivery mode

Raises

• asyncio.TimeoutError – when message expired

• CancelledError – when called RPC.cancel()

• RuntimeError – internal error

classmethod create(channel: aio_pika.channel.Channel, **kwargs) →
aio_pika.patterns.rpc.RPC

Creates a new instance of aio_pika.patterns.RPC. You should use this method instead of
__init__(), because create() returns coroutine and makes async initialize

Parameters channel – initialized instance of aio_pika.Channel

Returns RPC

deserialize(data: bytes)→ Any
Deserialize data from bytes. Uses pickle by default. You should overlap this method when you want to
change serializer

Parameters data – Data which will be deserialized

4.4. API Reference 73



aio-pika Documentation, Release 7.0.1

Returns Any

execute(func: Callable[[...], T], payload: Dict[str, Any])→ T
Executes rpc call. Might be overlapped.

register(method_name: str, func: Callable[[...], T], **kwargs)→ Any
Method creates a queue with name which equal of method_name argument. Then subscribes this queue.

Parameters

• method_name – Method name

• func – target function. Function MUST accept only keyword arguments.

• kwargs – arguments which will be passed to queue_declare

Raises RuntimeError – Function already registered in this RPC instance or method_name
already used.

serialize(data: Any)→ bytes
Serialize data to the bytes. Uses pickle by default. You should overlap this method when you want to
change serializer

Parameters data – Data which will be serialized

Returns bytes

serialize_exception(exception: Exception)→ bytes
Serialize python exception to bytes

Parameters exception – Exception

Returns bytes

unregister(func: Callable[[...], T])→ None
Cancels subscription to the method-queue.

Parameters func – Function

74 Chapter 4. Table Of Contents



CHAPTER 5

Thanks for contributing

• @mosquito (author)

• @hellysmile (bug fixes and ideas)

• @alternativehood (bugfixes)

• @akhoronko

• @zyp

• @decaz

• @kajetanj

• @iselind

• @driverx

75

https://github.com/mosquito
https://github.com/hellysmile
https://github.com/alternativehood
https://github.com/akhoronko
https://github.com/zyp
https://github.com/decaz
https://github.com/kajetanj
https://github.com/iselind
https://github.com/DriverX


aio-pika Documentation, Release 7.0.1

76 Chapter 5. Thanks for contributing



CHAPTER 6

Versioning

This software follows Semantic Versioning

77

http://semver.org/


aio-pika Documentation, Release 7.0.1

78 Chapter 6. Versioning



Python Module Index

a
aio_pika, 54

79



aio-pika Documentation, Release 7.0.1

80 Python Module Index



Index

A
ack() (aio_pika.IncomingMessage method), 59
add_reconnect_callback()

(aio_pika.RobustConnection method), 65
aio_pika (module), 54
AMQPException (in module aio_pika), 54

B
base (in module aio_pika.patterns), 72
bind() (aio_pika.Exchange method), 57
bind() (aio_pika.Queue method), 61
bind() (aio_pika.RobustExchange method), 67
bind() (aio_pika.RobustQueue method), 68

C
call() (aio_pika.patterns.RPC method), 73
cancel() (aio_pika.Queue method), 62
cancel() (aio_pika.RobustQueue method), 68
Channel (class in aio_pika), 54
channel() (aio_pika.Connection method), 56
channel() (aio_pika.RobustConnection method), 66
CHANNEL_CLASS (aio_pika.Connection attribute), 56
CHANNEL_CLASS (aio_pika.RobustConnection at-

tribute), 65
close() (aio_pika.patterns.Worker method), 72
connect() (aio_pika.Connection method), 57
connect() (aio_pika.RobustConnection method), 66
connect() (in module aio_pika), 69
connect_robust() (in module aio_pika), 70
Connection (class in aio_pika), 56
consume() (aio_pika.Queue method), 62
consume() (aio_pika.RobustQueue method), 68
create() (aio_pika.patterns.RPC class method), 73
create_task() (aio_pika.patterns.Master method),

72
create_worker() (aio_pika.patterns.Master

method), 72

D
declare() (aio_pika.Queue method), 62

declare_exchange() (aio_pika.Channel method),
55

declare_exchange() (aio_pika.RobustChannel
method), 64

declare_queue() (aio_pika.Channel method), 55
declare_queue() (aio_pika.RobustChannel

method), 65
delete() (aio_pika.Exchange method), 58
delete() (aio_pika.Queue method), 63
DeliveryMode (class in aio_pika), 57
deserialize() (aio_pika.patterns.Master method),

72
deserialize() (aio_pika.patterns.RPC method), 73

E
Exchange (class in aio_pika), 57
EXCHANGE_CLASS (aio_pika.Channel attribute), 54
EXCHANGE_CLASS (aio_pika.RobustChannel at-

tribute), 64
ExchangeType (class in aio_pika), 59
execute() (aio_pika.patterns.RPC method), 74

G
get() (aio_pika.Queue method), 63
get_exchange() (aio_pika.Channel method), 55
get_queue() (aio_pika.Channel method), 56

I
IncomingMessage (class in aio_pika), 59
info() (aio_pika.IncomingMessage method), 59
info() (aio_pika.Message method), 61
is_closed (aio_pika.Channel attribute), 56
is_closed (aio_pika.RobustConnection attribute), 66
is_initialized (aio_pika.Channel attribute), 56
iterator() (aio_pika.Queue method), 63

L
lock() (aio_pika.Message method), 61
locked (aio_pika.Message attribute), 61

81



aio-pika Documentation, Release 7.0.1

M
Master (class in aio_pika.patterns), 72
Message (class in aio_pika), 60
MessageProcessError, 61

P
process() (aio_pika.IncomingMessage method), 59
properties (aio_pika.Message attribute), 61
publish() (aio_pika.Exchange method), 58
purge() (aio_pika.Queue method), 64

Q
Queue (class in aio_pika), 61
QUEUE_CLASS (aio_pika.Channel attribute), 55
QUEUE_CLASS (aio_pika.RobustChannel attribute), 64

R
register() (aio_pika.patterns.RPC method), 74
reject() (aio_pika.IncomingMessage method), 60
RobustChannel (class in aio_pika), 64
RobustConnection (class in aio_pika), 65
RobustExchange (class in aio_pika), 67
RobustQueue (class in aio_pika), 68
RPC (class in aio_pika.patterns), 72

S
serialize() (aio_pika.patterns.Master method), 72
serialize() (aio_pika.patterns.RPC method), 74
serialize_exception() (aio_pika.patterns.RPC

method), 74

U
unbind() (aio_pika.Exchange method), 58
unbind() (aio_pika.Queue method), 64
unbind() (aio_pika.RobustExchange method), 67
unbind() (aio_pika.RobustQueue method), 69
unregister() (aio_pika.patterns.RPC method), 74

W
Worker (class in aio_pika.patterns), 72

82 Index


	Features
	Installation
	Development
	Table Of Contents
	Quick start
	Simple consumer
	Simple publisher
	Asynchronous message processing
	Working with RabbitMQ transactions
	Get single message example
	Tornado example
	External credentials example
	Connection pooling

	Patterns and helpers
	Master/Worker
	RPC
	Extending

	RabbitMQ tutorial
	Introduction
	Work Queues
	Publish/Subscribe
	Routing
	Topics
	Remote procedure call (RPC)

	API Reference

	Thanks for contributing
	Versioning
	Python Module Index
	Index

